论文标题

通过路径积分和有限差异方法,偶然受限的随机最佳控制

Chance-Constrained Stochastic Optimal Control via Path Integral and Finite Difference Methods

论文作者

Patil, Apurva, Duarte, Alfredo, Smith, Aislinn, Tanaka, Takashi, Bisetti, Fabrizio

论文摘要

本文通过汉密尔顿 - 雅各比 - 贝尔曼(HJB)部分偏微分方程(PDE)解决了连续时间连续空间的偶然性限制随机最佳控制(SOC)问题。通过Lagrangian放松,我们将偶然受限的(风险约束)SOC问题转换为风险最小的SOC问题,其成本功能具有时间节奏的钟声结构。我们表明,风险最小化控制合成等同于解决HJB PDE的边界条件可以适当调整以达到所需的安全水平。此外,已经表明,提出的风险最小化控制问题可以看作是估计与给定控制策略相关的风险问题的概括。探索了两种数值技术,即路径积分和有限差异方法(FDM),以解决一类风险最小的SOC问题,这些问题可以通过COLE-HOPF转换来线性化。使用2D机器人导航示例,我们验证了所提出的控制合成框架,并比较了使用路径积分和FDM获得的解决方案。

This paper addresses a continuous-time continuous-space chance-constrained stochastic optimal control (SOC) problem via a Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE). Through Lagrangian relaxation, we convert the chance-constrained (risk-constrained) SOC problem to a risk-minimizing SOC problem, the cost function of which possesses the time-additive Bellman structure. We show that the risk-minimizing control synthesis is equivalent to solving an HJB PDE whose boundary condition can be tuned appropriately to achieve a desired level of safety. Furthermore, it is shown that the proposed risk-minimizing control problem can be viewed as a generalization of the problem of estimating the risk associated with a given control policy. Two numerical techniques are explored, namely the path integral and the finite difference method (FDM), to solve a class of risk-minimizing SOC problems whose associated HJB equation is linearizable via the Cole-Hopf transformation. Using a 2D robot navigation example, we validate the proposed control synthesis framework and compare the solutions obtained using path integral and FDM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源