论文标题

基于群集的回归使用变分推断和财务预测中的应用

Cluster-based Regression using Variational Inference and Applications in Financial Forecasting

论文作者

Nagpal, Udai, Nagpal, Krishan

论文摘要

本文介绍了一种同时识别簇的方法,并从给定数据估算了集群特异性回归参数。当输入空间的不同区域中,用于估计输出的回归参数不同时,这种方法对于学习输入和输出之间的关系很有用。变性推理(VI)是一种使用优化技术获得后验概率密度的机器学习方法,用于识别每个群集的解释变量和回归参数的簇。从这些结果中,可以同时获得预期的预期价值和预测输出的完整分布。拟议方法的其他优点包括优雅的理论解决方案和结果清晰的解释性。所提出的方法非常适合财务预测,在市场上,市场具有不同的制度(或集群),并具有不同的模式和每个制度市场变化的相关性。在财务应用中,有关此类集群的知识可以提供有关投资组合绩效的有用见解,并确定变量在不同市场制度中的相对重要性。考虑了预测一天的标准普尔变更的一个说明性示例,以说明方法并将所提出方法的性能与没有集群的标准回归进行比较。由于问题的广泛适用性,其优雅的理论解决方案以及所提出算法的计算效率,该方法在超出金融领域的许多领域中可能很有用。

This paper describes an approach to simultaneously identify clusters and estimate cluster-specific regression parameters from the given data. Such an approach can be useful in learning the relationship between input and output when the regression parameters for estimating output are different in different regions of the input space. Variational Inference (VI), a machine learning approach to obtain posterior probability densities using optimization techniques, is used to identify clusters of explanatory variables and regression parameters for each cluster. From these results, one can obtain both the expected value and the full distribution of predicted output. Other advantages of the proposed approach include the elegant theoretical solution and clear interpretability of results. The proposed approach is well-suited for financial forecasting where markets have different regimes (or clusters) with different patterns and correlations of market changes in each regime. In financial applications, knowledge about such clusters can provide useful insights about portfolio performance and identify the relative importance of variables in different market regimes. An illustrative example of predicting one-day S&P change is considered to illustrate the approach and compare the performance of the proposed approach with standard regression without clusters. Due to the broad applicability of the problem, its elegant theoretical solution, and the computational efficiency of the proposed algorithm, the approach may be useful in a number of areas extending beyond the financial domain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源