论文标题
一步一步的混乱潜力的通货膨胀
Inflation from a chaotic potential with a step
论文作者
论文摘要
在这项工作中,我们研究了从混乱的潜力中对通货膨胀宇宙相关观察参数的影响。我们从数值上进化了冷通货膨胀和温暖通货膨胀范围内的扰动方程。一方面,在冷通货膨胀方案中,我们分析了标量功率谱$ p _ {\ Mathcal {r}} $,以e折的数量$ n_ {e} $,以及比率$ k/k_ {0} $,其中$ k_ {0} $,其中$ k_ {0} $是我们的piv cap。我们展示了$ p _ {\ Mathcal {r}} $振荡$ 0.2 <k/k_ {0} <20 $。此外,我们介绍了两个相关参数的演变:标量光谱索引$ n_ \ mathrm {s} $和张量与刻录比率$ r $。实际上,$(n_ \ mathrm {s},r)的一个以上的区域位于可观察的窗口内(Planck 2018)。另一方面,在温暖的通货膨胀案例中,我们还研究了$ p _ {\ Mathcal {r}} $的演变。在WI中将扰动放大;实际上,$ p _ {\ mathcal {r}} $可能比cmb值$ p _ {\ mathcal {r}}> 2.22 \ times 10^{ - 9} $大得多。这次,光谱索引$ n_ \ mathrm {s} $显然是蓝色倾斜的,在较小的尺度上,张量比比率$ r $变得太低。但是,$ n_ \ mathrm {s} $可以从蓝色倾斜到红色倾斜,因为$ p _ {\ mathcal {r}} $启动在$ k/k_ {0} \ sim 40 $左右振荡。实际上,台阶的结果掠过了普朗克轮廓。最后,这项研究的一个关键方面是对比范式之间的通货膨胀潜力的特征,实际上它们显示出相似性和差异。由于具有特色背景和熵波动的综合效果(仅在温暖的通货膨胀中),在两种情况下,某些波动量表都不长``''''在超级水平尺度上''''''。
In this work, we study the effects on the relevant observational parameters of an inflationary universe from a chaotic potential with a step. We numerically evolve the perturbation equations within both cold inflation and warm inflation. On the one hand, in a cold inflation scenario we analyse the scalar power spectrum $P_{\mathcal{R}}$ in terms of the number of e-folds $N_{e}$, and in terms of the ratio $k/k_{0}$, where $k_{0}$ is our pivot scale. We show how $P_{\mathcal{R}}$ oscillates around $0.2< k/k_{0} < 20$. Additionally, we present the evolution of two relevant parameters: the scalar spectral index $n_\mathrm{s}$ and the tensor-to-scalar ratio $r$. In fact, more than one region of $(n_\mathrm{s},r)$ lies within the observable window (Planck 2018). On the other hand, in the warm inflationary case, we also examine the evolution of $P_{\mathcal{R}}$ in terms of $N_{e}$ and $k/k_{0}$. Perturbations are amplified in WI; in fact, $P_{\mathcal{R}}$ can be much larger than the CMB value $P_{\mathcal{R}}> 2.22\times 10^{-9}$. This time, the spectral index $n_\mathrm{s}$ is clearly blue-tilted, at smaller scales, and the tensor-to-scalar ratio $r$ becomes too low. However, $n_\mathrm{s}$ can change from blue-tilted towards red-tilted, since $P_{\mathcal{R}}$ starts oscillating around $k/k_{0}\sim 40$. Indeed, the result from the step potential skims the Planck contours. Finally, one key aspect of this research was to contrast the features of an inflationary potential between both paradigms, and, in fact, they show similarities and differences. Due to a featured background and a combined effect of entropy fluctuations (only in warm inflation), in both scenarios certain fluctuation scales are not longer ``freeze in'' on super-horizon scales.