论文标题

格里森的复合系统定理

Gleason's theorem for composite systems

论文作者

Frembs, Markus, Döring, Andreas

论文摘要

格里森的定理[A.格里森,J。Math。 Mech。,\ textbf {6},885(1957)]是量子力学基础的重要结果,在量子力学的基础上,它作为量子形式主义的数学结果证明了天生的规则。正式地,它对希尔伯特空间的投影几何形状提供了一个关键的见解,表明在界限运算符$ \ bh $的代数上,投影晶格$ \ ph $上有限的添加度度量扩展到正线性功能。多年来,通过各种作者的努力,该定理的范围从I型到任意的von Neumann代数(无类型$ \ text {i} _2 _2 $因素)。在这里,我们证明了格里森定理对复合系统的概括。为此,我们通过两种方式加强了最初的结果:首先,我们将其范围扩展到Naimark的膨胀[M. A. Naimark,C。R.(Dokl。)学院。科学。 Urss,n。 ser。,\ textbf {41},359(1943)]和stinespring [W. F. Stinespring,Proc。是。数学。 soc。,\ textbf {6},211(1955)],其次,我们需要在组成中相应(局部)代数的动态对应方面的一致性[E. E. M. Alfsen和F. W. Shultz,Commun。数学。 Phys。,\ textbf {194},87(1998)]。我们表明,这两种情况都没有改变单个系统案例的结果,但是两者都必须获得对两分系统的概括。

Gleason's theorem [A. Gleason, J. Math. Mech., \textbf{6}, 885 (1957)] is an important result in the foundations of quantum mechanics, where it justifies the Born rule as a mathematical consequence of the quantum formalism. Formally, it presents a key insight into the projective geometry of Hilbert spaces, showing that finitely additive measures on the projection lattice $\PH$ extend to positive linear functionals on the algebra of bounded operators $\BH$. Over many years, and by the effort of various authors, the theorem has been broadened in its scope from type I to arbitrary von Neumann algebras (without type $\text{I}_2$ factors). Here, we prove a generalisation of Gleason's theorem to composite systems. To this end, we strengthen the original result in two ways: first, we extend its scope to dilations in the sense of Naimark [M. A. Naimark, C. R. (Dokl.) Acad. Sci. URSS, n. Ser., \textbf{41}, 359 (1943)] and Stinespring [W. F. Stinespring, Proc. Am. Math. Soc., \textbf{6}, 211 (1955)] and second, we require consistency with respect to dynamical correspondences on the respective (local) algebras in the composition [E. M. Alfsen and F. W. Shultz, Commun. Math. Phys., \textbf{194}, 87 (1998)]. We show that neither of these conditions changes the result in the single system case, yet both are necessary to obtain a generalisation to bipartite systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源