论文标题

文档级关系提取的无类排名损失

None Class Ranking Loss for Document-Level Relation Extraction

论文作者

Zhou, Yang, Lee, Wee Sun

论文摘要

文档级别的关系提取(RE)旨在提取跨多个句子表达的实体之间的关系,可以将其视为多标签分类问题。在典型的文档中,大多数实体对不表示任何预定义的关系,并将其标记为“无”或“无关系”。对于良好的文档级别的性能,将无类实例(实体对)与预定义类(关系)(关系)区分开是至关重要的。但是,大多数现有方法仅在不考虑“无关系”的概率的情况下独立估计预定关系的概率。这忽略了实体对的上下文以及无类和预定义的类之间的标签相关性,从而导致了次优的预测。为了解决这个问题,我们提出了一种新的多标签损失,该损失鼓励每个预定义的类和无类之间的标签置信度得分很大,从而使捕获的标签相关性和与上下文相关的阈值进行标签预测。为了获得可能出现在现实世界中RE数据集中的积极阴性不平衡和标记错误的数据的进一步鲁棒性,我们提出了边缘正则化和边缘变化技术。实验结果表明,我们的方法显着优于文档级别的现有多标签损失,并且在其他多标签任务(如情绪分类)中效果很好,当时没有类实例可用于培训。

Document-level relation extraction (RE) aims at extracting relations among entities expressed across multiple sentences, which can be viewed as a multi-label classification problem. In a typical document, most entity pairs do not express any pre-defined relation and are labeled as "none" or "no relation". For good document-level RE performance, it is crucial to distinguish such none class instances (entity pairs) from those of pre-defined classes (relations). However, most existing methods only estimate the probability of pre-defined relations independently without considering the probability of "no relation". This ignores the context of entity pairs and the label correlations between the none class and pre-defined classes, leading to sub-optimal predictions. To address this problem, we propose a new multi-label loss that encourages large margins of label confidence scores between each pre-defined class and the none class, which enables captured label correlations and context-dependent thresholding for label prediction. To gain further robustness against positive-negative imbalance and mislabeled data that could appear in real-world RE datasets, we propose a margin regularization and a margin shifting technique. Experimental results demonstrate that our method significantly outperforms existing multi-label losses for document-level RE and works well in other multi-label tasks such as emotion classification when none class instances are available for training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源