论文标题

Feynman图的分类语义

Categorical Semantics for Feynman Diagrams

论文作者

Shaikh, Razin A., Gogioso, Stefano

论文摘要

我们介绍了Feynman图的新颖组成描述,并在匕首 - 紧凑型类别中具有明确定义的分类语义作为形态。我们选择的设置适用于无限二维图解推理,概括了ZX微积分和其他代数的量子量子理论社区熟悉的代数小工具。 我们定义的Feynman图看起来与它们的传统对应物非常相似,但更笼统:除了描绘散射幅度,它们体现了在任何给定的初始和最终粒子状态下计算振幅本身的线性图。这一透视图的转变反映了从传统的Feynman图的句法,图理论组成到语义,分类 - 二氧化述构图的正式过渡。 因为我们在具体的分类环境中工作 - 由非标准分析提供支持 - 我们能够在描述中直接利用复杂的加性结构。这使得为​​分类Feynman图的顺序组成而得出一个特别令人信服的表征,这会自动导致单个图本身的所有可能的图理论组合的叠加。

We introduce a novel compositional description of Feynman diagrams, with well-defined categorical semantics as morphisms in a dagger-compact category. Our chosen setting is suitable for infinite-dimensional diagrammatic reasoning, generalising the ZX calculus and other algebraic gadgets familiar to the categorical quantum theory community. The Feynman diagrams we define look very similar to their traditional counterparts, but are more general: instead of depicting scattering amplitude, they embody the linear maps from which the amplitudes themselves are computed, for any given initial and final particle states. This shift in perspective reflects into a formal transition from the syntactic, graph-theoretic compositionality of traditional Feynman diagrams to a semantic, categorical-diagrammatic compositionality. Because we work in a concrete categorical setting -- powered by non-standard analysis -- we are able to take direct advantage of complex additive structure in our description. This makes it possible to derive a particularly compelling characterisation for the sequential composition of categorical Feynman diagrams, which automatically results in the superposition of all possible graph-theoretic combinations of the individual diagrams themselves.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源