论文标题

煤层模态逻辑中的均匀插值

Uniform Interpolation in Coalgebraic Modal Logic

论文作者

Seifan, Fatemeh, Schröder, Lutz, Pattinson, Dirk

论文摘要

如果可以将其公式投影到给定的子签名,从而保留所有逻辑后果,而这些后果没有提及删除的符号,则具有统一的插值; (craig)插值的较弱特性允许投影公式(interpolant)对于原始公式的每个逻辑结果都不同。这些属性很重要,例如,在逻辑理论的模块化中。我们研究了在岩性模态逻辑的背景下,即在等级1中的模态逻辑,以有限的方式限制了案例的清晰度。此类逻辑的示例包括模态逻辑K和KD,邻里逻辑及其单调变体,有限的 - 单子镜加权逻辑和联盟逻辑。我们介绍了一个步骤(均匀)插值的概念,该概念仅是指限制逻辑而没有模态嵌套,并表明如果具有一步的插值,则表明它具有统一的插值。此外,我们确定有限冲销性弱回调的保存是足够的,并且在单调的情况下是一步插值的条件。因此,我们证明或在上面列出的大多数示例中证明或否决统一的插值。

A logic has uniform interpolation if its formulas can be projected down to given subsignatures, preserving all logical consequences that do not mention the removed symbols; the weaker property of (Craig) interpolation allows the projected formula -- the interpolant -- to be different for each logical consequence of the original formula. These properties are of importance, e.g., in the modularization of logical theories. We study interpolation in the context of coalgebraic modal logics, i.e. modal logics axiomatized in rank 1, restricting for clarity to the case with finitely many modalities. Examples of such logics include the modal logics K and KD, neighbourhood logic and its monotone variant, finite-monoid-weighted logics, and coalition logic. We introduce a notion of one-step (uniform) interpolation, which refers only to a restricted logic without nesting of modalities, and show that a coalgebraic modal logic has uniform interpolation if it has one-step interpolation. Moreover, we identify preservation of finite surjective weak pullbacks as a sufficient, and in the monotone case necessary, condition for one-step interpolation. We thus prove or reprove uniform interpolation for most of the examples listed above.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源