论文标题

基于终生的基于新的Sunway超级计算机上量子电路的优化

Lifetime-based Optimization for Simulating Quantum Circuits on a New Sunway Supercomputer

论文作者

Chen, Yaojian, Liu, Yong, Shi, Xinmin, Song, Jiawei, Liu, Xin, Gan, Lin, Guo, Chu, Fu, Haohuan, Gao, Jie, Chen, Dexun, Yang, Guangwen

论文摘要

用于量子电路的高性能经典模拟器,尤其是张量网络收缩算法,已成为验证嘈杂量子计算的重要工具。为了解决内存限制,切片技术用于降低张量尺寸,但也可能导致其他计算开销,从而大大减慢整体性能。本文提出了新的基于终生的方法,以减少切片开销并提高计算效率,包括一种处理切片开销的解释方法,该方法是一种就地切片策略,可以找到最小的切片集和一种自适应量量张量网络缩放的收缩路径,该策略定制了用于Sunway建筑的炼油厂。实验表明,在大多数情况下,使用我们的现场切片策略的切片开销将小于Cotengra,这是目前最常用的图形路径优化软件。最后,对于Sycamore Quantum处理器RQC,所得的仿真时间减少到96.1s,可持续的单位性能的可持续单位性能为308.6Pflops,使用超过41M的核心,以生成1M相关的样品,这是2021年Gordon Bell Prian Prian奖励工作的5倍以上。

High-performance classical simulator for quantum circuits, in particular the tensor network contraction algorithm, has become an important tool for the validation of noisy quantum computing. In order to address the memory limitations, the slicing technique is used to reduce the tensor dimensions, but it could also lead to additional computation overhead that greatly slows down the overall performance. This paper proposes novel lifetime-based methods to reduce the slicing overhead and improve the computing efficiency, including an interpretation method to deal with slicing overhead, an in-place slicing strategy to find the smallest slicing set and an adaptive tensor network contraction path refiner customized for Sunway architecture. Experiments show that in most cases the slicing overhead with our in-place slicing strategy would be less than the cotengra, which is the most used graph path optimization software at present. Finally, the resulting simulation time is reduced to 96.1s for the Sycamore quantum processor RQC, with a sustainable single-precision performance of 308.6Pflops using over 41M cores to generate 1M correlated samples, which is more than 5 times performance improvement compared to 60.4 Pflops in 2021 Gordon Bell Prize work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源