论文标题

学习轨迹游戏中的混合策略

Learning Mixed Strategies in Trajectory Games

论文作者

Peters, Lasse, Fridovich-Keil, David, Ferranti, Laura, Stachniss, Cyrill, Alonso-Mora, Javier, Laine, Forrest

论文摘要

在多代理设置中,游戏理论是描述代理的战略相互作用的自然框架,其目标取决于彼此的行为。轨迹游戏通过设计捕获这些复杂的效果。在竞争环境中,这使它们成为比传统的“预测计划”方法更忠实的互动模型。但是,当前的游戏理论计划方法具有重要的局限性。在这项工作中,我们提出了两个主要贡献。首先,我们引入了一个离线培训阶段,该阶段减轻了解决轨迹游戏的在线计算负担。其次,我们制定了一个举起的游戏,该游戏使玩家可以一致优化多个候选轨迹,从而构建了更具竞争力的“混合”策略。我们使用追踪逃避游戏“标签”来验证许多实验的方法。

In multi-agent settings, game theory is a natural framework for describing the strategic interactions of agents whose objectives depend upon one another's behavior. Trajectory games capture these complex effects by design. In competitive settings, this makes them a more faithful interaction model than traditional "predict then plan" approaches. However, current game-theoretic planning methods have important limitations. In this work, we propose two main contributions. First, we introduce an offline training phase which reduces the online computational burden of solving trajectory games. Second, we formulate a lifted game which allows players to optimize multiple candidate trajectories in unison and thereby construct more competitive "mixed" strategies. We validate our approach on a number of experiments using the pursuit-evasion game "tag."

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源