论文标题
由Hermitian Yang-Mills指标引起的半连接部分偏微分方程
A semilinear partial differential equation induced by Hermitian Yang-Mills metrics
论文作者
论文摘要
本文将讨论通过研究Hermitian Yang-Mills指标的限制行为引起的一类半连续部分偏微分方程。我们将研究此方程的$ c^{2} $的径向对称性,以$ \ mathbb {r}^{2} $以及$ c^{2,α} $的存在dirichlet边界价值问题的存在在任何有限的域中。
This paper will discuss a class of semilinear partial differential equations induced by studying the limiting behaviour of Hermitian Yang-Mills metrics. We will study the radial symmetry of the $C^{2}$ global solution of this equation in $\mathbb{R}^{2}$ and the existence of $C^{2,α}$ solution of the Dirichlet boundary value problem in any bounded domain.