论文标题

Defakehop ++:增强的轻量级深泡检测器

DefakeHop++: An Enhanced Lightweight Deepfake Detector

论文作者

Chen, Hong-Shuo, Hu, Shuowen, You, Suya, Kuo, C. -C. Jay

论文摘要

在Defakehop的基础上,在这项工作中提出了增强的轻巧的DeepFake检测器,称为DefakeHop ++。这些改进位于两个领域。首先,DeFakehop检查了三个面部区域(即两只眼睛和嘴巴),而Defakehop ++还包括八个范围内的地标,以进行更广泛的覆盖范围。其次,对于判别特征选择,DeFakeHop使用无监督的方法,而DeFakeHop ++采用了一种更有效的方法,可以通过监督,称为判别功能测试(DFT)。在Defakehop ++中,最初是自动衍生自面部区域和地标。然后,DFT用于选择分类器培训的判别功能的子集。与Mobilenet V3(在移动应用程序上针对目标的150万参数的轻量级CNN模型)相比,DeFakeHop ++具有238K参数的模型,这是Mobilenet V3的16%。此外,在弱监督的设置中,Defakehop ++在DeepFake图像检测性能中优于Mobilenet V3。

On the basis of DefakeHop, an enhanced lightweight Deepfake detector called DefakeHop++ is proposed in this work. The improvements lie in two areas. First, DefakeHop examines three facial regions (i.e., two eyes and mouth) while DefakeHop++ includes eight more landmarks for broader coverage. Second, for discriminant features selection, DefakeHop uses an unsupervised approach while DefakeHop++ adopts a more effective approach with supervision, called the Discriminant Feature Test (DFT). In DefakeHop++, rich spatial and spectral features are first derived from facial regions and landmarks automatically. Then, DFT is used to select a subset of discriminant features for classifier training. As compared with MobileNet v3 (a lightweight CNN model of 1.5M parameters targeting at mobile applications), DefakeHop++ has a model of 238K parameters, which is 16% of MobileNet v3. Furthermore, DefakeHop++ outperforms MobileNet v3 in Deepfake image detection performance in a weakly-supervised setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源