论文标题
寓言:用于块编码的快速近似量子电路
FABLE: Fast Approximate Quantum Circuits for Block-Encodings
论文作者
论文摘要
矩阵的块编码已成为从量子奇异值转换得出的量子算法的重要元素。这包括各种算法,从量子线性系统问题到量子步行,哈密顿模拟和量子机器学习。这些算法中的许多都以黑框矩阵Oracle查询达到了最佳的复杂性,但是到目前为止,计算量子电路实现矩阵块的量子电路实现的问题已经得到了低估。在本文中,我们提出了寓言,这是一种生成近似量子电路以快速进行矩阵编码的方法。寓言电路具有简单的结构,并直接根据一四分之二的门配制。对于小型且结构化的矩阵,它们在NISQ时代是可行的,并且可以轻松地生成电路参数,以达到15码数的问题。此外,我们表明寓言电路可以被压缩和稀疏。我们提供了将压缩阈值与块编码上的误差相关联的压缩定理。我们为海森伯格和哈伯德汉密尔顿人和拉普拉斯操作员基准了我们的方法,以说明它们可以通过降低的门复杂性实现而不会近似误差。
Block-encodings of matrices have become an essential element of quantum algorithms derived from the quantum singular value transformation. This includes a variety of algorithms ranging from the quantum linear systems problem to quantum walk, Hamiltonian simulation, and quantum machine learning. Many of these algorithms achieve optimal complexity in terms of black box matrix oracle queries, but so far the problem of computing quantum circuit implementations for block-encodings of matrices has been under-appreciated. In this paper we propose FABLE, a method to generate approximate quantum circuits for block-encodings of matrices in a fast manner. FABLE circuits have a simple structure and are directly formulated in terms of one- and two-qubit gates. For small and structured matrices they are feasible in the NISQ era, and the circuit parameters can be easily generated for problems up to fifteen qubits. Furthermore, we show that FABLE circuits can be compressed and sparsified. We provide a compression theorem that relates the compression threshold to the error on the block-encoding. We benchmark our method for Heisenberg and Hubbard Hamiltonians, and Laplacian operators to illustrate that they can be implemented with a reduced gate complexity without approximation error.