论文标题

椭圆差方程的过度解决方案

Hyperexponential solutions of elliptic difference equations

论文作者

Combot, Thierry

论文摘要

考虑一个椭圆曲线$ \ MATHCAL {C} $,带有$ \ Mathbb {K} $的系数,带有$ [\ Mathbb {k {k}:\ Mathbb {q}] <\ infty $和$ unfty $和$δ\ in \ Mathcal {C}(c}(c}(c}))我们考虑一个椭圆差方程$ \ sum_ {i = 0}^l a_i(p)f(p \ oplusi.δ)= 0 $ with $ \ oplus $ eelliptic添加法和$ a_i $ polynomials on $ \ nathcal {c} $。我们提出了一种计算有理解决方案的算法,然后是一个中介类,我们称为伪理性解决方案,最后是HypereXponential Solutions,该解决方案是函数$ f $,因此$ f(p \oplusΔ)/f(p)$是$ \ nathcal {c} $的合理的。

Consider an elliptic curve $\mathcal{C}$ with coefficients in $\mathbb{K}$ with $[\mathbb{K}:\mathbb{Q}]<\infty$ and $δ\in \mathcal{C}(\mathbb{K})$ a non torsion point. We consider an elliptic difference equation $\sum_{i=0}^l a_i(p) f(p\oplus i.δ)=0$ with $\oplus$ the elliptic addition law and $a_i$ polynomials on $\mathcal{C}$. We present an algorithm to compute rational solutions, then an intermediary class we call pseudo-rational solutions, and finally hyperexponential solutions, which are functions $f$ such that $f(p\oplus δ)/f(p)$ is rational over $\mathcal{C}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源