论文标题
无线电界对撞击器引导者引导程序
Boostless Cosmological Collider Bootstrap
论文作者
论文摘要
宇宙相关功能包含有关原始宇宙的有价值信息,并具有很高能量的新质量颗粒的可能标志。最近的发展,包括宇宙学引导程序,带来了研究这些可观察物的新观点和强大的工具。在本文中,我们使用Bootstrap方法系统地将标量扰动的三点相关器分类。我们第一次得出了一组具有新形状和潜在可检测信号的单交换宇宙撞机双镜。具体而言,我们专注于通过在通货膨胀期间与所有可能的增强相互作用的大型颗粒交换产生的原始标量双头角。我们介绍了三分“种子”功能,从中我们使用重量转移和旋转式操作员来引导标量和旋转交换的通货膨胀双线。种子函数的计算需要在Comoving Monga中求解一个普通的微分方程,这是传播器满足运动方程的边界版本,该方程将大量粒子与外部光标量线线性地混合在一起。对于任何运动学,所得的相关因子以分析形式呈现。这些形状对近未实现的宇宙学调查非常有意义,因为在增强理论中的原始非高斯性可能很大。我们还确定了这些形状中的新特征,在现象学上,这些特征与保姆不变案例不同。例如,挤压极限周围的振荡形状具有不同的阶段。此外,当巨大的粒子的声音速度远低于加速器时,振荡特征会出现在等边构型周围。
Cosmological correlation functions contain valuable information about the primordial Universe, with possible signatures of new massive particles at very high energies. Recent developments, including the cosmological bootstrap, bring new perspectives and powerful tools to study these observables. In this paper, we systematically classify inflationary three-point correlators of scalar perturbations using the bootstrap method. For the first time, we derive a complete set of single-exchange cosmological collider bispectra with new shapes and potentially detectable signals. Specifically, we focus on the primordial scalar bispectra generated from the exchange of massive particles with all possible boost-breaking interactions during inflation. We introduce three-point "seed" functions, from which we bootstrap the inflationary bispectra of scalar and spinning exchanges using weight-shifting and spin-raising operators. The computation of the seed function requires solving an ordinary differential equation in comoving momenta, a boundary version of the equation of motion satisfied by a propagator that linearly mixes a massive particle with the external light scalars. The resulting correlators are presented in analytic form, for any kinematics. These shapes are of interest for near-future cosmological surveys, as the primordial non-Gaussianity in boost-breaking theories can be large. We also identify new features in these shapes, which are phenomenologically distinct from the de Sitter invariant cases. For example, the oscillatory shapes around the squeezed limit have different phases. Furthermore, when the massive particle has much lower speed of sound than the inflaton, oscillatory features appear around the equilateral configuration.