论文标题

多语言提示:多语言多任务发言

Polyglot Prompt: Multilingual Multitask PrompTraining

论文作者

Fu, Jinlan, Ng, See-Kiong, Liu, Pengfei

论文摘要

本文旨在进行多语言学习和询问的潜在建筑改进:是否可以在单片框架中对不同语言的不同任务进行建模,即没有任何任务/语言特定的模块?实现这一目标的好处可能会为将来的多语言研究打开新的大门,包括允许接受低资源培训的系统得到其他语言以及其他任务的进一步协助。我们通过开发一个名为Polyglot的学习框架来实现这一目标,该框架提示了提示方法,以学习使用多语言及时工程的不同语言和任务的统一语义空间。我们对6个任务进行了全面评估,即主题分类,情感分类,命名实体识别,问题答案,自然语言推断和摘要,涵盖了24个数据集和49种语言。实验结果证明了多语言多任务迅速学习的功效,并导致了鼓舞人心的观察。我们还提出了一种可解释的多语言评估方法,并展示了建议的框架如何,多语言的多任务及时培训,工作。我们在最佳设置和代码中发布所有提示的数据集。

This paper aims for a potential architectural improvement for multilingual learning and asks: Can different tasks from different languages be modeled in a monolithic framework, i.e. without any task/language-specific module? The benefit of achieving this could open new doors for future multilingual research, including allowing systems trained on low resources to be further assisted by other languages as well as other tasks. We approach this goal by developing a learning framework named Polyglot Prompting to exploit prompting methods for learning a unified semantic space for different languages and tasks with multilingual prompt engineering. We performed a comprehensive evaluation of 6 tasks, namely topic classification, sentiment classification, named entity recognition, question answering, natural language inference, and summarization, covering 24 datasets and 49 languages. The experimental results demonstrated the efficacy of multilingual multitask prompt-based learning and led to inspiring observations. We also present an interpretable multilingual evaluation methodology and show how the proposed framework, multilingual multitask prompt training, works. We release all datasets prompted in the best setting and code.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源