论文标题
电子光电路交叉
Electronic-photonic circuit crossings
论文作者
论文摘要
集成光子学中光的电气控制对于广泛的研究和应用至关重要。通常,它是通过热线调整来实现的,但这遭受了高能量消耗和串扰的影响。这些挑战可以通过纳米机电光子学解决,但是由于与常规多层金属架构不兼容,因此无法证明可扩展的平台,并且由于常规方法不允许电线和光子波导的交叉。在这里,我们使用拓扑优化来设计单层电子光电电路交叉,并在具有出色的电隔离的隔离式沟渠上具有高达99.8%的光学传输。我们使用交叉来证明单片硅纳米机械加载力开关,其中光子,电子和机械运动的流动在同一层中完全集成。我们的工作使迄今不可能的光电机机械拓扑结构不可能导致纳米 - 电动机机械系统,光学力学和集成量子光子学的新功能。
Electrical control of light in integrated photonics is central to a wide range of research and applications. It is conventionally achieved with thermo-optic tuning, but this suffers from high energy consumption and crosstalk. These challenges could be resolved with nanoelectromechanical photonics but scalable platforms were so far not demonstrated because of incompatibility with conventional multilayer metal architectures and because conventional approaches do not allow crossings of electrical wires and photonic waveguides. Here we use topology optimization to devise a single-layer electronic-photonic circuit crossing with up to 99.8% optical transmission across an isolation trench with excellent electrical isolation. We use the crossing to demonstrate a monolithic silicon nano-electro-mechanical add-drop switch in which the flow of photons, electrons, and mechanical motions are fully integrated within the same layer. Our work enables hitherto impossible opto-electro-mechanical topologies and may lead to new functionalities in nano-opto-electro-mechanical systems, optomechanics, and integrated quantum photonics.