论文标题

Ossgan:开放式半监督图像生成

OSSGAN: Open-Set Semi-Supervised Image Generation

论文作者

Katsumata, Kai, Vo, Duc Minh, Nakayama, Hideki

论文摘要

我们介绍了有条件gan的具有挑战性的培训计划,称为开放设定的半监督图像生成,其中培训数据集由两个部分组成:(i)标记的数据和(ii)未标记的数据,带有属于标记的数据类别之一的样本,即封闭式的任何一个封闭式的样本,以及任何标记的数据类别,一个公开的数据类别,name nam nem nam nam nam nam nam nam nam nam nam nam nam nam nam nam nam nam nam nam nam nam name nam。与现有的半监督图像生成任务(无标记的数据仅包含封闭设置的样本)不同,我们的任务更为一般,并且通过允许出现开放式样本来降低实践中数据收集成本。得益于熵正则化,经过标记的数据训练的分类器能够量化样本的重要性,以培训CGAN作为信心,从而使我们能够在未标记的数据中使用所有样本。我们设计了Ossgan,它根据未标记的图像属于一个或不属于一个类别的类别,在培训过程中平稳整合标记和未标记的数据,从而为歧视者提供决策线索。在微小的成像网和成像网上实验的结果表明,对受监督的Biggan和半监督方法的改进显着。我们的代码可从https://github.com/raven38/ossgan获得。

We introduce a challenging training scheme of conditional GANs, called open-set semi-supervised image generation, where the training dataset consists of two parts: (i) labeled data and (ii) unlabeled data with samples belonging to one of the labeled data classes, namely, a closed-set, and samples not belonging to any of the labeled data classes, namely, an open-set. Unlike the existing semi-supervised image generation task, where unlabeled data only contain closed-set samples, our task is more general and lowers the data collection cost in practice by allowing open-set samples to appear. Thanks to entropy regularization, the classifier that is trained on labeled data is able to quantify sample-wise importance to the training of cGAN as confidence, allowing us to use all samples in unlabeled data. We design OSSGAN, which provides decision clues to the discriminator on the basis of whether an unlabeled image belongs to one or none of the classes of interest, smoothly integrating labeled and unlabeled data during training. The results of experiments on Tiny ImageNet and ImageNet show notable improvements over supervised BigGAN and semi-supervised methods. Our code is available at https://github.com/raven38/OSSGAN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源