论文标题

空格中脱落操作员的卷曲和梯度

Curl and gradient of divergence operators in Spaces $ \mathbf{W}^{m}$ and $\mathbf{A}^{2k}$ vortex and potential fields and in the classes $\mathbf{C}(2k, m)$

论文作者

Saks, Romen Semenovich

论文摘要

在空间$ \ Mathbf {l Mathbf {l} _ {2} _ {2}(g)中,研究了卷曲的属性和Divergence运算符($ \ text {rot {rot} $和$ \ nabla \ text {div} $)的属性。 \ Mathbf {C}(2K,M)(G)\ Equiv \ MathBf {A}^{2K}(G)(G)\ Oplus \ Mathbf {W}^M(G)$。空间$ \ mathbf {l} _ {2}(g)$被分解为正交子空间$ \ MATHCAL {a} $和$ \ MATHCAL {B} $:$ \ MATHBF {l} _ {2} _ {2}(g)反过来,$ \ MATHCAL {a} = \ MATHCAL {a} _H \ oplus \ MathBf {a}^0 $和$ \ Mathcal {b} = \ Mathcal {b} _h {b} _H \ oplus oplus \ oplus \ oplus \ mathbf \ mathbf {v}^0 $, $ \ MATHCAL {B} _h $是运算符的空空间$ \ nabla \ text {div} $和$ \ text {rot} $ in $ \ nathcal {a} $和$ \ mathcal {b} $ $ \ MATHCAL {A} _H $和$ \ MATHCAL {B} _H $的尺寸是有限的,并由边界的拓扑确定; $ \ MATHCAL {a} _h = \ emptyset $和$ \ Mathcal {b} _h = \ emptyset $如果域$ω$是一个球。正常基础是在$ \ mathbf {a}^0 $(spect。,in $ \ mathbf {v}^0 $)中构建的,由eigenfields $ \ mathbf {q} _ {q} _ {j} _ {j} _ {j}(\ mathbf {x})$ $ \ Mathbf {q}^{\ pm} _ {j}(\ Mathbf {x})$ $ \ text {rot} $ operator),带有非零eigenvalues $μ__{j} $(resp。,$ \ pmpempmλ_{j} $)。运算符$ \ nabla \ nabla \ mathrm {div} $和$ \ mathrm {rot} $互相取消,并在$ \ mathcal {a} $和$ \ mathcal {b} $,和$ \ mathrmsrmsrmsrm mathrm mathrm mathrm { \ Mathbf {u} \ in \ Mathcal {a} $,以及$ \ nabla \ Mathrm div \ MathBf \ MathBf {V} = 0 $ for $ \ Mathbf {V} \ in \ Mathcal {b} $ \ cite {hw}。通过它们表示的Laplace矩阵操作员:$ \MATHRMδ\ MathBf {V} \ Equiv \ Nabla \ Nabla \ Mathrm {div} \,\ Mathbf {V} - (\ Mathrm {rot})

The properties of the curl and the gradient of divergence operators ( $ \text{rot}$ and $\nabla\text{div}$ ) are studied in the space $ \mathbf {L}_{2} (G) $ in a bounded domain $ G \subset \textrm {R}^3 $ with a smooth boundary $ Γ$ and in the classes $ \mathbf{C}(2k, m)(G)\equiv \mathbf{A}^{2k}(G) \oplus \mathbf{W}^m(G)$. The space $ \mathbf {L}_{2} (G) $ is decomposed into orthogonal subspaces $ \mathcal{A} $ and $ \mathcal {B} $: $\mathbf{L}_{2}(G)=\mathcal{A}\oplus \mathcal{B}$. In turn, $ \mathcal{A}= \mathcal{A}_H\oplus \mathbf{A}^0$ and $\mathcal{B}=\mathcal{B}_H \oplus \mathbf{V}^0$, where $\mathcal{A}_H $ and $\mathcal{B}_H $ are null spaces of operators $\nabla \text{div}$ and $ \text{rot}$ in $\mathcal{A}$ and $\mathcal{B}$; the dimensions of $\mathcal{A}_H $ and $\mathcal{B}_H $ are finite and determined by the topology of the boundary; $\mathcal{A}_H=\emptyset $ and $\mathcal{B}_H= \emptyset $ if the domain $Ω$ is a ball. The orthonormal basis are constructed in the class $ \mathbf{A}^0$ (resp., In $\mathbf{V}^0$ ) by eigenfields $\mathbf{q}_{j}(\mathbf{x})$ of $\nabla \text{div}$ operator (resp., $\mathbf{q}^{\pm }_{j}(\mathbf{x})$ of $ \text{rot}$ operator) with nonzero eigenvalues $μ_{j}$ (resp., $\pm λ_{j}$ ). The operators $\nabla\mathrm{div}$ and $\mathrm{rot}$ cancel each other out and project $\mathbf{L}_{2}(G) $ onto $ \mathcal {A} $ and $ \mathcal { B} $, and $ \mathrm {rot} \, \mathbf {u} = 0 $ for $ \mathbf {u} \in \mathcal {A} $, and $ \nabla \mathrm div \mathbf {v} = 0 $ for $ \mathbf {v} \in \mathcal {B} $ \cite{hw}. Laplace matrix operator expressed through them: $\mathrmΔ \mathbf {v} \equiv \nabla \mathrm{div}\,\mathbf {v} -(\mathrm{rot})^2\, \mathbf {v}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源