论文标题

2DMoiré晶格中的磁性域,带正方形和六角形对称性

Magnetic domains in 2D moiré lattices with square and hexagonal symmetry

论文作者

Madroñero, Christian, Paredes, Rosario

论文摘要

我们报告了以正方形和六角形对称性的莫伊尔模式中的磁域的持久性。我们的研究基于对两个磁域的动态描述,这些磁域由$^{87} $ rb Ultracold Atoms的两个物种骨混合物表示,每个磁体混合物最初都位于由特定角度$θ$定义的MoiréLattice的左右半部分。为了证明这种初始域的持久性,我们遵循超流体自旋纹理的时间演变,尤其是每个半半的磁化。通过依赖于$ 90 \ times 90 $ sites的Moirélattices,通过依赖于时间依赖的Gross-Pitaevskii耦合方程来描述了限制在Moiré模式和谐波陷阱中的两个组件超流体。结果表明,存在旋转角度依赖性结构,为方形和六角形莫伊尔图案保留了初始磁性域。高于$θ> 10^\ circ $初始磁域永远不会被破坏。单个组件玻璃冷凝物的固定磁状态使我们能够识别与Moiré晶体相关的晶格参数,这些晶格参数出现,这些晶格参数呈扭曲属于间隔$θ\ in \ eft \ left(0^\ circe,30^\ circt \ circt \ right)$和$θ\ in \ in \ in \ in \ in \ in \ weft(0^\ circ,45^\ cirp,45^^\ right for Square)的$θ\ hex和平方的$θ\。

We report the persistence of magnetic domains lying in moiré patterns with square and hexagonal symmetries. Our investigation is based on the dynamical description of two magnetic domains represented by a two species bosonic mixture of $^{87}$Rb ultracold atoms, being each specie initially localized in the left and right halves of a moiré lattice defined by a specific angle $θ$. To demonstrate the persistence of such initial domains, we follow the time evolution of the superfluid spin texture, and in particular, the magnetization on each halve. The two-component superfluid, confined in the moiré pattern plus a harmonic trap, was described through the time dependent Gross-Pitaevskii coupled equations for moiré lattices having $90 \times 90$ sites. Results showed the existence of rotation-angle-dependent structures for which the initial magnetic domain is preserved for both, square and hexagonal moiré patterns; above $θ>10^\circ$ the initial magnetic domain is never destroyed. Stationary magnetic states for a single component Bose condensate allowed us to identify the lattice parameter associated with moiré crystals that emerge for twisting angles belonging to the intervals $θ\in \left(0^\circ ,30^\circ \right)$ and $θ\in \left(0^\circ ,45^\circ \right)$ for hexagonal and square geometries respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源