论文标题

在非中心frobenius代数上

On non-counital Frobenius algebras

论文作者

Hernandez, Amanda, Walton, Chelsea, Yadav, Harshit

论文摘要

Frobenius代数是有限维代数$ a $,配备了共同点的,顾问合作地图$δ$,这是$ a $ a-bimodule地图。在这里,我们研究了Frobenius代数的概括:有限维自注(Quasi-Frobenius)代数代数的概括。我们表明,包括有限维弱的HOPF代数在内的大量此类代数,配备了非零地图$δ$,不一定是Counital。我们还猜想,这种共同的结构通常适用于自我注射代数。

A Frobenius algebra is a finite-dimensional algebra $A$ which comes equipped with a coassociative, counital comultiplication map $Δ$ that is an $A$-bimodule map. Here, we examine comultiplication maps for generalizations of Frobenius algebras: finite-dimensional self-injective (quasi-Frobenius) algebras. We show that large classes of such algebras, including finite-dimensional weak Hopf algebras, come equipped with a nonzero map $Δ$ as above that is not necessarily counital. We also conjecture that this comultiplicative structure holds for self-injective algebras in general.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源