论文标题

satfeatpy-一种基于Python的功能提取系统,可满足

SATfeatPy -- A Python-based Feature Extraction System for Satisfiability

论文作者

Provan-Bessell, Benjamin, Dalla, Marco, Visentin, Andrea, O'Sullivan, Barry

论文摘要

特征提取是应用机器学习方法SAT解决方案的基本任务。它用于算法选择和配置,用于求解器组合和可满足性分类。已经提出了许多方法来从CNF实例中提取有意义的属性。他们中的大多数人缺乏工作/更新的实现,而有限的描述缺乏影响可重复性的明确性。此外,文献错过了这些功能之间的比较。本文介绍了Satfeatpy,这是一个为CNF形式的SAT问题提供功能提取技术的库。该软件包提供了该领域主要论文的所有结构和统计特征的实现。该库以最新的,易于使用的Python软件包以及详细的功能描述提供。我们使用从3000个SAT和UNSAT实例的数据集生成的五组功能,显示了SAT/UNSAT和问题类别分类的高精度,这些功能超过了十个不同的问题。最后,我们比较了在消融研究中预测SAT实例原始结构的特征的实用性和重要性。

Feature extraction is a fundamental task in the application of machine learning methods to SAT solving. It is used in algorithm selection and configuration for solver portfolios and satisfiability classification. Many approaches have been proposed to extract meaningful attributes from CNF instances. Most of them lack a working/updated implementation, and the limited descriptions lack clarity affecting the reproducibility. Furthermore, the literature misses a comparison among the features. This paper introduces SATfeatPy, a library that offers feature extraction techniques for SAT problems in the CNF form. This package offers the implementation of all the structural and statistical features from there major papers in the field. The library is provided in an up-to-date, easy-to-use Python package alongside a detailed feature description. We show the high accuracy of SAT/UNSAT and problem category classification, using five sets of features generated using our library from a dataset of 3000 SAT and UNSAT instances, over ten different classes of problems. Finally, we compare the usefulness of the features and importance for predicting a SAT instance's original structure in an ablation study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源