论文标题

Ramsey关于分区的理论II:负面关系和泵送定理

Ramsey theory over partitions II: Negative Ramsey relations and pump-up theorems

论文作者

Kojman, Menachem, Rinot, Assaf, Steprans, Juris

论文摘要

在这一系列论文中,我们将拉姆齐色彩理论推向了分区。在这一部分中,我们专注于反兰西的关系,或者,众所周知,它们的着色是强烈的,尤其是从[CKS21]中解决了两个问题。 结果表明,对于每个无限的红衣主教$λ$,可以将分区上的$λ^+$上的颜色强给$λ$的颜色,可以用$λ^{+} $颜色在同一分区上延伸到一个颜色。同样,对于一个较强的颜色,可以改善$ pr_1(\ ldots)$的浓烈着色时,可以改善有足够的条件。 由于经典理论对应于仅一个单元的分区的特殊情况,因此两个结果分别概括了由于Eisworth和Shelah引起的泵送定理。

In this series of papers we advance Ramsey theory of colorings over partitions. In this part, we concentrate on anti-Ramsey relations, or, as they are better known, strong colorings, and in particular solve two problems from [CKS21]. It is shown that for every infinite cardinal $λ$, a strong coloring on $λ^+$ by $λ$ colors over a partition can be stretched to one with $λ^{+}$ colors over the same partition. Also, a sufficient condition is given for when a strong coloring witnessing $Pr_1(\ldots)$ over a partition may be improved to witness $Pr_0(\ldots)$. Since the classical theory corresponds to the special case of a partition with just one cell, the two results generalize pump-up theorems due to Eisworth and Shelah, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源