论文标题
Spin-1 Bose-Einstein冷凝物中一对重叠的极性明亮孤子的动力学
Dynamics of a Pair of Overlapping Polar Bright Solitons in Spin-1 Bose-Einstein Condensates
论文作者
论文摘要
我们分析了种群和自旋密度的动力学,这是从旋转1纺丝中的两个不同极性孤子片之间的空间重叠出现的。标量凝结物中重叠的孤子的动力学表现出孤子融合,原子从一个孤子转换为另一个孤子,并根据重叠的程度和孤子之间的相对相位。标量案例还有助于我们理解向量孤子的动力学。在纺纱剂的情况下,在空间和旋转自由度中出现了非平凡的动力学。在没有自旋变化碰撞的情况下,我们观察到每个自旋成分的种群动力学中的约瑟夫森样振荡。在这种情况下,人口动力学独立于相对阶段,但是旋转密度向量的动力学取决于它。后者还见证了振荡域壁的出现。这对重叠的极性孤子对四个铁磁孤子出现,而与相同的自旋依赖性和自旋依赖性相互作用强度相同的初始相位差。但是最终孤子的动力学明确取决于相对相。根据自旋依赖性和自旋非依赖性的相互作用强度的比率,一对旋转仪也可以作为最终状态出现。然后,增加重叠的程度可能会导致固定铁磁溶解和一对振荡器同时形成,并取决于相对相。
We analyze the dynamics of both population and spin densities, emerging from the spatial overlap between two distinct polar bright solitons in Spin-1 Spinor Condensates. The dynamics of overlapping solitons in scalar condensates exhibits soliton fusion, atomic switching from one soliton to another and repulsive dynamics depending on the extent of overlap and the relative phase between the solitons. The scalar case also helps us understand the dynamics of the vector solitons. In the spinor case, non-trivial dynamics emerge in spatial and spin degrees of freedom. In the absence of spin changing collisions, we observe Josephson-like oscillations in the population dynamics of each spin component. In this case, the population dynamics is independent of the relative phase, but the dynamics of the spin-density vector depends on it. The latter also witnesses the appearance of oscillating domain walls. The pair of overlapping polar solitons emerge as four ferromagnetic solitons irrespective of the initial phase difference for identical spin-dependent and spin-independent interaction strengths. But the dynamics of final solitons depends explicitly on the relative phase. Depending on the ratio of spin-dependent and spin-independent interaction strengths, a pair of oscillatons can also emerge as the final state. Then, increasing the extent of overlap may lead to the simultaneous formation of both a stationary ferromagnetic soltion and a pair of oscillatons depending on the relative phase.