论文标题

利用三胞胎损失和非线性尺寸降低在线频道图表

Leveraging triplet loss and nonlinear dimensionality reduction for on-the-fly channel charting

论文作者

Yassine, Taha, Magoarou, Luc Le, Paquelet, Stéphane, Crussière, Matthieu

论文摘要

渠道图表是一种无监督的学习方法,旨在将无线通道映射到所谓的图表,并尽可能保留尽可能多的空间邻域。在本文中,提出了基于模型的深度学习方法。它建立在一个有力动机的距离测量的基础上,以结构并初始化随后使用三胞胎损耗函数训练的神经网络。所提出的结构表现出较少的参数和巧妙的初始化会导致快速训练。这两个功能使提出的方法适合在频道的频道图表上。该方法在现实的合成通道上进行了经验评估,从而产生了令人鼓舞的结果。

Channel charting is an unsupervised learning method that aims at mapping wireless channels to a so-called chart, preserving as much as possible spatial neighborhoods. In this paper, a model-based deep learning approach to this problem is proposed. It builds on a physically motivated distance measure to structure and initialize a neural network that is subsequently trained using a triplet loss function. The proposed structure exhibits a low number of parameters and clever initialization leads to fast training. These two features make the proposed approach amenable to on-the-fly channel charting. The method is empirically assessed on realistic synthetic channels, yielding encouraging results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源