论文标题

铝合金中脆性脱糖骨折的相位场建模

Phase-Field Modeling of Coupled Brittle-Ductile Fracture in Aluminum Alloys

论文作者

Vakili, Samad, Shanthraj, Pratheek, Roters, Franz, Mianroodi, Jaber R., Raabe, Dierk

论文摘要

具有沉淀物的铝合金中的断裂涉及至少两种机制,即富含铝的基质的延性裂缝和沉淀物的脆性断裂。在这项工作中,制定了混合延性易碎衰竭模式的耦合晶体可塑性相模型,并用于研究沉淀形态和尺寸分布对铝合金损伤演化的影响。裂缝过程区域中弹性和塑料工作耗散的热力学一致框架分别用于制定脆性和延性损伤的耦合本构行为。产生具有不同粒子形态和方向的代表性体积元素(RVE),并模拟其单轴载荷以评估不同模型微结构的损伤性。对于关键的能源释放速率,单晶的铝矩阵的值$ g_c $从4到8〜JM $^{ - 2} $,从10到16〜JM $ $^{ - 2} $用于多晶,该模型可以预测,该模型可以预测,ductile Matrix失败的破坏模式的变化是一种变化。观察到$ g_c $增加的粒子故障机理的变化,单个和多晶模型微结构都观察到了。对于粒子脱根的情况,与其他研究的病例相比,具有圆形或椭圆形颗粒(垂直于载荷方向的主要轴)的微观结构显示出更高的延展性和断裂工作。在粒子裂纹的情况下,平行于载荷轴对齐的椭圆形颗粒的微观结构显示出较高的延展性和骨折的作用。这些模拟对两个不同的矩阵合金类(商业上纯和2xxx合金)的实验观察到的粒子失败机制(开裂和脱粘)被涂有陶瓷颗粒加固。

Fracture in aluminum alloys with precipitates involves at least two mechanisms, namely, ductile fracture of the aluminum-rich matrix and brittle fracture of the precipitates. In this work, a coupled crystal plasticity-phase field model for mixed ductile-brittle failure modes is formulated and used to investigate the effect of precipitate morphology and size distribution on damage evolution in aluminum alloys. A thermodynamically consistent framework for elastic and plastic work dissipation in the fracture process zone is used to formulate the coupled constitutive behavior for brittle and ductile damage, respectively. Representative Volume Elements (RVE) with varying particle morphology and orientation were generated and their uni-axial loading was simulated to assess the damage resistance of the different model microstructures. For critical energy release rate $G_c$ values of the aluminum matrix ranging from 4 to 8~Jm$^{-2}$ for single crystals and from 10 to 16~Jm$^{-2}$ for polycrystals, the model predicts a change in failure modes from particle debonding to cracking followed by ductile matrix failure. The change of particle failure mechanism as a result of increased $G_c$ is observed for both, single and polycrystalline model microstructures. For the case of particle debonding, microstructures with circular or ellipsoidal particles (with the major axis perpendicular to the loading direction) show a higher ductility and fracture work compared to the other studied cases. In the case of particle cracking, microstructures with ellipsoidal particles aligned parallel to the loading axis show a higher ductility and fracture work among the investigated cases. The simulations qualitatively reproduce the experimentally observed particle failure mechanisms (cracking and debonding) for two different matrix alloy classes (commercially pure and 2xxx alloys) reinforced with ceramic particles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源