论文标题

拉格朗日平均曲率流的古代解决方案和翻译人员

Ancient solutions and translators of Lagrangian mean curvature flow

论文作者

Lotay, Jason D., Schulze, Felix, Székelyhidi, Gábor

论文摘要

假设$ \ MATHCAL {M} $是$ \ Mathbb {C}^n $中的Lagrangian平均曲率流的几乎经过校准,精确,古老的解决方案。我们表明,如果$ \ Mathcal {m} $具有静态联合的吹向,两个拉格朗日子空间具有沿行沿线相交的不同lagrangian Angles,则$ \ Mathcal {M} $是翻译器。特别是在$ \ mathbb {c}^2 $中,所有几乎经过校准的,精确的,古老的均值曲率流,熵小于3的曲率流量是特殊的Lagrangian,是飞机或翻译人员的结合。

Suppose that $\mathcal{M}$ is an almost calibrated, exact, ancient solution of Lagrangian mean curvature flow in $\mathbb{C}^n$. We show that if $\mathcal{M}$ has a blow-down given by the static union of two Lagrangian subspaces with distinct Lagrangian angles that intersect along a line, then $\mathcal{M}$ is a translator. In particular in $\mathbb{C}^2$, all almost calibrated, exact, ancient solutions of Lagrangian mean curvature flow with entropy less than 3 are special Lagrangian, a union of planes, or translators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源