论文标题

Zeta和$ L $ functions的衍生物的极端值

Extreme values of derivatives of zeta and $L$-functions

论文作者

Yang, Daodao

论文摘要

事实证明,作为$ t \ to \ infty $,对于所有积极整数而言,均匀地表示$ \ ell \ leqslant(\ log_3 t) /(\ log_4 t)$,我们有\ begin \ begin {equation*} \ max_ 2t} \ left |ζ^{(\ ell)} \ big(1+it \ big)\ right | \ geqslant \ big(\ Mathbf y _ {\ ell}+ o \ left(1 \右) u^{\ ell}ρ(u)du $。这里$ρ(u)$是Dickman函数。我们有$ \ mathbf y _ {\ ell}> e^γ/(\ ell + 1)$和$ \ log \,\ Mathbf y _ _ {\ ell} = \ left(1 + o \ left(1 + o \ left(1 \ weles) Dirichlet $ L $ functions也建立了类似的结果。另一方面,在假设Riemann假设和广义的Riemann假设时,我们为$ \ left |建立了上限| ζ^{(\ ell)} \ left(1+it \ right)\ right | $和$ \ left | l^{(\ ell)}(1,χ)\ right | $。此外,当假设Granville-Soundararajan猜想是正确的时,我们建立以下渐近公式$$ \ max_ {\ setack {χ\ neq \ neq \ neqχ_0\\ \χ(\ text {mod} \,Q)}}}}}}}}}}}}}}}} _ \sim \mathbf Y_{\ell}\left(\log_2 q\right)^{\ell+1},\,\, \quad \text{as}\,\quad q \to \infty,$$ where $q$ is prime and $\ell \in \mathbb{N}$ is given.

It is proved that as $T \to \infty$, uniformly for all positive integers $\ell \leqslant (\log_3 T) / (\log_4 T)$, we have \begin{equation*} \max_{T\leqslant t\leqslant 2T}\left|ζ^{(\ell)}\Big(1+it\Big)\right| \geqslant \big(\mathbf Y_{\ell}+ o\left(1\right)\big)\left(\log_2 T \right)^{\ell+1} \,, \end{equation*} where $\mathbf Y_{\ell} = \int_0^{\infty} u^{\ell} ρ(u) du$. Here $ρ(u)$ is the Dickman function. We have $\mathbf Y_{\ell} > e^γ/(\ell + 1)$ and $ \log\, \mathbf Y_{\ell} = \left(1 + o\left(1\right) \right) \ell \log \ell$ when $ \ell \to \infty $, which significantly improves previous results in [17, 40]. Similar results are established for Dirichlet $L$-functions. On the other hand, when assuming the Riemann Hypothesis and the Generalized Riemann Hypothesis, we establish upper bounds for $ \left| ζ^{(\ell)}\left(1+it\right)\right| $ and $\left|L^{(\ell)}(1, χ) \right|$. Furthermore, when assuming the Granville-Soundararajan Conjecture is true, we establish the following asymptotic formulas $$\max_{ \substack{ χ\neq χ_0 \\ χ(\text{mod}\, q)}} \left|L^{(\ell)}(1, χ) \right| \sim \mathbf Y_{\ell}\left(\log_2 q\right)^{\ell+1},\,\, \quad \text{as}\,\quad q \to \infty,$$ where $q$ is prime and $\ell \in \mathbb{N}$ is given.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源