论文标题
一种基于节点的均匀应变虚拟元素方法,用于可压缩和几乎不可压缩的弹性
A node-based uniform strain virtual element method for compressible and nearly incompressible elasticity
论文作者
论文摘要
我们提出了一种合并的淋巴结整合和虚拟元素方法,用于可压缩且几乎不可压缩的弹性,其中应变在周围虚拟元素的菌株中平均在节点处。对于应变平均过程,使用对有限元元素的基于节点的均匀应变方法的虚拟元素的概括来构建节点平均操作员。我们将提出的技术称为基于节点的均匀应变虚拟元素方法(NVEM)。在这种方法中没有引入其他自由度,从而导致基于位移的配方。 NVEM的一个显着特征是,应力和应变成为淋巴结变量,就像位移一样,可以在非线性模拟中利用。通过可压缩且几乎不可压缩的弹性以及弹性动力学中的几个基准问题,我们证明了NVEM是准确的,最佳的收敛性且没有体积锁定的。
We propose a combined nodal integration and virtual element method for compressible and nearly incompressible elasticity, wherein the strain is averaged at the nodes from the strain of surrounding virtual elements. For the strain averaging procedure, a nodal averaging operator is constructed using a generalization to virtual elements of the node-based uniform strain approach for finite elements. We refer to the proposed technique as the node-based uniform strain virtual element method (NVEM). No additional degrees of freedom are introduced in this approach, thus resulting in a displacement-based formulation. A salient feature of the NVEM is that the stresses and strains become nodal variables just like displacements, which can be exploited in nonlinear simulations. Through several benchmark problems in compressible and nearly incompressible elasticity as well as in elastodynamics, we demonstrate that the NVEM is accurate, optimally convergent and devoid of volumetric locking.