论文标题

Segal Topoi和弦的物理数学

The Physical Mathematics of Segal Topoi and Strings

论文作者

Gauthier, Renaud

论文摘要

我们通过考虑堆栈的Segal类别$ \ Mathcal {x} = \ text {daff} _ {\ Mathcal {C}}}^{ $ \ text {daff} _ {\ Mathcal {c}} = $ l(comm(comm($ \ mathcal {c}})^{op})$作为我们的系统,以及$ \ mathbb {r} \ mathbb {r} \ useverline {\ niselline {\ text {\ home}}} {我们在这种情况下发展了量子状态的概念,并构建了此类状态的本地和全球流。在这种形式主义中,字符串是由$ \ Mathcal {C} $(基本对称的单体模型类别的$ \ Mathcal {C} $的元素之间的等价给出的。与标准字符串理论的联系是建立的,尤其是与M理论建立的。

We introduce a notion of dynamics in the setting of Segal topos, by considering the Segal category of stacks $\mathcal{X} = \text{dAff}_{\mathcal{C}}^{\, \sim, τ}$ on a Segal category $\text{dAff}_{\mathcal{C}}=$ L(Comm($\mathcal{C})^{op})$ as our system, and by regarding objects of $\mathbb{R}\underline{\text{Hom}}(\mathcal{X}, \mathcal{X})$ as its states. We develop the notion of quantum state in this setting and construct local and global flows of such states. In this formalism, strings are given by equivalences between elements of commutative monoids of $\mathcal{C}$, a base symmetric monoidal model category. The connection with standard string theory is made, and with M-theory in particular.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源