论文标题

双仿射Hecke代数的准多项式表示

Quasi-polynomial representations of double affine Hecke algebras

论文作者

Sahi, Siddhartha, Stokman, Jasper, Venkateswaran, Vidya

论文摘要

我们介绍了双仿射hecke代数$ \ mathbb {h} $作用于准多项式空间上的明确表示,该家族是根据截断的截短的lusztig type操作员定义的。我们表明,这些准元素表示形式提供了一个自然家族的循环$ y $ $ $ $ $ \ mathbb {h} $表示的具体实现。我们将Cherednik众所周知的多项式表示为特殊情况。 准化合物表示产生了在准多项式空间上的通勤操作员的家族。这些概括了Cherednik运营商,这是麦当劳多项式研究的基础。我们提供了它们的联合征函数的详细研究,这可以被视为非对称麦克唐纳多项式的准多项式,多参数概括。我们还介绍了对称麦克唐纳多项式的概括,这些多项式在标准Weyl群动作的多参数概括下是不变的。 我们将结果与非架构本地领域的还原群体覆盖范围的表示理论联系起来。我们通过对MacDonald多项式的准多项式概括进行适当的限制和重复化,从我们以前的工作中介绍了跨度多项式的根系概括。我们表明,可以通过占据这些元素多项式的惠特克极限来恢复元素iwahori-whittaker功能。

We introduce an explicit family of representations of the double affine Hecke algebra $\mathbb{H}$ acting on spaces of quasi-polynomials, defined in terms of truncated Demazure-Lusztig type operators. We show that these quasi-polynomial representations provide concrete realizations of a natural family of cyclic $Y$-parabolically induced $\mathbb{H}$-representations. We recover Cherednik's well-known polynomial representation as a special case. The quasi-polynomial representation gives rise to a family of commuting operators acting on spaces of quasi-polynomials. These generalize the Cherednik operators, which are fundamental in the study of Macdonald polynomials. We provide a detailed study of their joint eigenfunctions, which may be regarded as quasi-polynomial, multi-parametric generalizations of nonsymmetric Macdonald polynomials. We also introduce generalizations of symmetric Macdonald polynomials, which are invariant under a multi-parametric generalization of the standard Weyl group action. We connect our results to the representation theory of metaplectic covers of reductive groups over non-archimedean local fields. We introduce root system generalizations of the metaplectic polynomials from our previous work by taking a suitable restriction and reparametrization of the quasi-polynomial generalizations of Macdonald polynomials. We show that metaplectic Iwahori-Whittaker functions can be recovered by taking the Whittaker limit of these metaplectic polynomials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源