论文标题
顾问:AI驱动的疫苗接种干预优化器,用于增加尼日利亚疫苗的摄取
ADVISER: AI-Driven Vaccination Intervention Optimiser for Increasing Vaccine Uptake in Nigeria
论文作者
论文摘要
每年在很大程度上可以预防或可治疗的医疗状况中,超过500万儿童死亡,在疫苗接种量低的欠发达国家中,死亡人数大部分大部分发生。联合国可持续发展目标之一(SDG 3)旨在结束五岁以下的新生儿和儿童的可预防死亡。我们专注于尼日利亚,婴儿死亡率令人震惊。我们与尼日利亚的大型非营利组织Helpmum合作设计和优化了不确定性下的异质健康干预措施的分配,以增加疫苗接种的吸收,这是尼日利亚的首次此类合作。我们的框架,顾问:AI驱动的疫苗接种干预优化器基于整数线性程序,该计划旨在最大化成功疫苗接种的累积概率。在实践中,我们的优化公式是棘手的。我们提出了一种启发式方法,使我们能够解决现实世界中用例的问题。我们还为启发式方法提出了理论界限。最后,我们表明,通过实验评估,所提出的方法在疫苗接种方面的表现优于基线方法。 Helpmum目前正在计划基于我们在尼日利亚最大的城市部署的方法,这将是该国AI驱动的疫苗接种吸收计划的首次部署,并希望为其他数据驱动计划铺平道路,以改善尼日利亚的健康状况。
More than 5 million children under five years die from largely preventable or treatable medical conditions every year, with an overwhelmingly large proportion of deaths occurring in under-developed countries with low vaccination uptake. One of the United Nations' sustainable development goals (SDG 3) aims to end preventable deaths of newborns and children under five years of age. We focus on Nigeria, where the rate of infant mortality is appalling. We collaborate with HelpMum, a large non-profit organization in Nigeria to design and optimize the allocation of heterogeneous health interventions under uncertainty to increase vaccination uptake, the first such collaboration in Nigeria. Our framework, ADVISER: AI-Driven Vaccination Intervention Optimiser, is based on an integer linear program that seeks to maximize the cumulative probability of successful vaccination. Our optimization formulation is intractable in practice. We present a heuristic approach that enables us to solve the problem for real-world use-cases. We also present theoretical bounds for the heuristic method. Finally, we show that the proposed approach outperforms baseline methods in terms of vaccination uptake through experimental evaluation. HelpMum is currently planning a pilot program based on our approach to be deployed in the largest city of Nigeria, which would be the first deployment of an AI-driven vaccination uptake program in the country and hopefully, pave the way for other data-driven programs to improve health outcomes in Nigeria.