论文标题
三维时钟模型的表面临界特性
Surface critical properties of the three-dimensional clock model
论文作者
论文摘要
使用Monte Carlo模拟和有限尺寸的缩放分析,我们表明,$ Q $ - 状态时钟模型具有$ Q = 6 $的$ Q = 6 $,带有开放表面的简单晶格具有丰富的相位图;特别是,除了批量关键点的普通和非凡的过渡外,它具有非凡的阶段。我们从数值上证明,中间非凡的非g阶段的存在是由于在表面进入$ z_ {q} $对称区域之前的o(2)对称性的出现,因为随着散装关键点的表面耦合的增加,而o(2)对称构成了bultk bultk。获得了非凡的循环转变的临界行为,以及分隔普通和非凡的人物转变的普通和特殊过渡。
Using Monte Carlo simulations and finite-size scaling analysis, we show that the $q$-state clock model with $q=6$ on the simple cubic lattice with open surfaces has a rich phase diagram; in particular, it has an extraordinary-log phase, besides the ordinary and extraordinary transitions at the bulk critical point. We prove numerically that the presence of the intermediate extraordinary-log phase is due to the emergence of an O(2) symmetry in the surface state before the surface enters the $Z_{q}$ symmetry-breaking region as the surface coupling is increased at the bulk critical point, while O(2) symmetry emerges for the bulk. The critical behaviors of the extraordinary-log transition, as well as the ordinary and the special transition separating the ordinary and the extraordinary-log transition are obtained.