论文标题

过程 - 伯特:教育过程中表示学习的框架

Process-BERT: A Framework for Representation Learning on Educational Process Data

论文作者

Scarlatos, Alexander, Brinton, Christopher, Lan, Andrew

论文摘要

教育过程数据,即计算机化或在线学习平台中详细的学生活动的日志,有可能深入了解学生学习方式。可以将过程数据用于许多下游任务,例如学习结果预测并自动提供个性化干预措施。但是,分析过程数据具有挑战性,因为过程数据的特定格式取决于不同的学习/测试方案。在本文中,我们提出了一个学习教育过程数据表示的框架,该框架适用于许多不同的学习方案。我们的框架由一个预训练步骤组成,该步骤使用BERT类型目标从顺序过程数据和微调步骤中学习表示表示,该步骤进一步在下游预测任务上进一步调整了这些表示。我们将我们的框架应用于2019年的报告卡数据挖掘竞赛数据集,该数据集由学生解决问题的过程数据和详细说明我们在这种情况下使用的特定模型组成。我们进行定量和定性实验,以表明我们的框架会导致既有预测性又有信息的过程数据表示。

Educational process data, i.e., logs of detailed student activities in computerized or online learning platforms, has the potential to offer deep insights into how students learn. One can use process data for many downstream tasks such as learning outcome prediction and automatically delivering personalized intervention. However, analyzing process data is challenging since the specific format of process data varies a lot depending on different learning/testing scenarios. In this paper, we propose a framework for learning representations of educational process data that is applicable across many different learning scenarios. Our framework consists of a pre-training step that uses BERT-type objectives to learn representations from sequential process data and a fine-tuning step that further adjusts these representations on downstream prediction tasks. We apply our framework to the 2019 nation's report card data mining competition dataset that consists of student problem-solving process data and detail the specific models we use in this scenario. We conduct both quantitative and qualitative experiments to show that our framework results in process data representations that are both predictive and informative.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源