论文标题
多参数彩色分区类别和降低的Kronecker系数的乘积
Multiparameter colored partition category and the product of the reduced Kronecker coefficients
论文作者
论文摘要
我们通过扩展分区类别的构造,在代数封闭的字段$ \ bbbk $上介绍和研究多参数彩色分区类别$ \ MATHCAL {CPAR {CPAR}(\ TextBf {X})$。 $ \ Mathcal {cpar}(\ textbf {x})$中的形态空间在分区图中具有基础,其零件的零件是由乘法循环组$ c_r $的元素颜色的。我们表明,$ \ MATHCAL {CPAR}(\ textbf {x})$的内态空间和$ \ Mathcal {CPAR {CPAR}(\ textbf {x})$的添加性karoubi信封$是一般的半岛。类别$ \ MATHCAL {CPAR}(\ textbf {x})$是刚性对称的严格单体,我们给出了$ \ Mathcal {cpar}(\ textbf {x})$作为单型类别。 $ \ MATHCAL {CPAR}(\ TextBf {X})$的路径代数接纳了三角分解,cartan sibgebra等于复杂反射组的组代数的直接总和$ g(r,n)$。我们计算在$ \ Mathcal {cpar}(\ textbf {x})$的向下分区子类别的路径代数上的拆分粒度环中简单模块的类别的结构常数。除其他外,这为$ g(r,n)$的富丽木系数(richardson系数)和花圈产品$(C_R \ times c_r \ times c_r)\ wr s_n $的某些kronecker系数提供了一个封闭式公式。对于$ r = 1 $,此公式将降低的Kronecker系数减少到了Littlewood给出的公式。我们还给出了彩色分区图的罗宾逊 - 链式对应关系的两个类似物,作为应用程序,我们根据这些对应关系对Green的左,右和两侧关系的等价类别进行了分类。
We introduce and study a multiparameter colored partition category $\mathcal{CPar}(\textbf{x})$ by extending the construction of the partition category, over an algebraically closed field $\Bbbk$ of characteristic zero and for a multiparameter $\textbf{x}\in \Bbbk^{r}$. The morphism spaces in $\mathcal{CPar}(\textbf{x})$ have bases in terms of partition diagrams whose parts are colored by elements of the multiplicative cyclic group $C_r$. We show that the endomorphism spaces of $\mathcal{CPar}(\textbf{x})$ and additive Karoubi envelope of $\mathcal{CPar}(\textbf{x})$ are generically semisimple. The category $\mathcal{CPar}(\textbf{x})$ is rigid symmetric strict monoidal and we give a presentation of $\mathcal{CPar}(\textbf{x})$ as a monoidal category. The path algebra of $\mathcal{CPar}(\textbf{x})$ admits a triangular decomposition with Cartan subalgebra being equal to the direct sum of the group algebras of complex reflection groups $G(r,n)$. We compute the structure constants for the classes of simple modules in the split Grothendieck ring of the category of modules over the path algebra of the downward partition subcategory of $\mathcal{CPar}(\textbf{x})$ in two ways. Among other things, this gives a closed formula for the product of the reduced Kronecker coefficients in terms of the Littlewood--Richardson coefficients for $G(r,n)$ and certain Kronecker coefficients for the wreath product $(C_r \times C_r)\wr S_n$. For $r=1$, this formula reduces to a formula for the reduced Kronecker coefficients given by Littlewood. We also give two analogues of the Robinson--Schensted correspondence for colored partition diagrams and, as an application, we classify the equivalence classes of Green's left, right and two-sided relations for the colored partition monoid in terms of these correspondences.