论文标题

使用荷兰临床笔记评估暴力风险的机器学习

Machine Learning for Violence Risk Assessment Using Dutch Clinical Notes

论文作者

Mosteiro, Pablo, Rijcken, Emil, Zervanou, Kalliopi, Kaymak, Uzay, Scheepers, Floortje, Spruit, Marco

论文摘要

精神科机构中的暴力风险评估使干预措施避免了暴力事件。从业人员和电子健康记录中获得的临床笔记是捕获独特信息的宝贵资源,但很少用于其全部潜力。我们探索使用从业者笔记来评估精神病患者暴力风险的常规机器学习方法。我们最佳模型的性能与当前使用的基于问卷的方法相媲美,而接收器操作特征曲线下的区域约为0.8。我们发现,深度学习模型Bertje的性能要比传统的机器学习方法差。我们还评估了我们的数据和分类器,以更好地了解模型的性能。这对于评估分类器对新数据的适用性尤为重要,并且由于电子格式的新数据的可用性增加,从业者也非常感兴趣。

Violence risk assessment in psychiatric institutions enables interventions to avoid violence incidents. Clinical notes written by practitioners and available in electronic health records are valuable resources capturing unique information, but are seldom used to their full potential. We explore conventional and deep machine learning methods to assess violence risk in psychiatric patients using practitioner notes. The performance of our best models is comparable to the currently used questionnaire-based method, with an area under the Receiver Operating Characteristic curve of approximately 0.8. We find that the deep-learning model BERTje performs worse than conventional machine learning methods. We also evaluate our data and our classifiers to understand the performance of our models better. This is particularly important for the applicability of evaluated classifiers to new data, and is also of great interest to practitioners, due to the increased availability of new data in electronic format.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源