论文标题
周期性时间表的热带和地球上的几何形状
The tropical and zonotopal geometry of periodic timetables
论文作者
论文摘要
定期事件调度问题(PESP)是用于优化公共交通中定期时间表问题的标准数学工具。 PESP的解决方案包括三个部分:定期时间表,周期性张力和整数周期性偏移值。虽然过去的周期性张力空间已引起了很多关注,但我们探索了其他两个组成部分的几何特性,从而在定期时间表和离散几何形状之间建立了新的联系。首先,我们研究可行的周期性时间表的空间,并将其分解为多层,即,在经典和热带几何学意义上都是凸的多型。然后,我们研究了这种分解,并使用它来概述PESP的新启发式启发式,该启发式基于多层型的热带邻里。其次,我们认识到分数循环偏移的空间实际上是一个划界。我们将其扎根砖与分数周期性紧张局部的高旋转角和周期时间表空间的热带社区联系起来。得出的结论,我们还使用这种新的理解来对整体周期的最小宽度进行紧密的下限。
The Periodic Event Scheduling Problem (PESP) is the standard mathematical tool for optimizing periodic timetabling problems in public transport. A solution to PESP consists of three parts: a periodic timetable, a periodic tension, and integer periodic offset values. While the space of periodic tension has received much attention in the past, we explore geometric properties of the other two components, establishing novel connections between periodic timetabling and discrete geometry. Firstly, we study the space of feasible periodic timetables, and decompose it into polytropes, i.e., polytopes that are convex both classically and in the sense of tropical geometry. We then study this decomposition and use it to outline a new heuristic for PESP, based on the tropical neighbourhood of the polytropes. Secondly, we recognize that the space of fractional cycle offsets is in fact a zonotope. We relate its zonotopal tilings back to the hyperrectangle of fractional periodic tensions and to the tropical neighbourhood of the periodic timetable space. To conclude we also use this new understanding to give tight lower bounds on the minimum width of an integral cycle basis.