论文标题
单一shimura品种的算术特殊部门的模块化(带有Yujie Xu的附录)
Modularity of arithmetic special divisors for unitary Shimura varieties (with an appendix by Yujie Xu)
论文作者
论文摘要
我们构建了库德拉(Kudla)特殊除数的一系列明确生成的算术扩展,这些分隔是在CM领域的单一shimura品种的积分模型上具有任意拆分级别的,并证明它们是算术杂烩组中价值的模块化形式。这为Kudla的模块化问题提供了部分解决方案。我们建筑中的主要成分是S.证明中的主要成分是算术混合的siegel-weil公式。
We construct explicit generating series of arithmetic extensions of Kudla's special divisors on integral models of unitary Shimura varieties over CM fields with arbitrary split levels and prove that they are modular forms valued in the arithmetic Chow groups. This provides a partial solution to Kudla's modularity problem. The main ingredient in our construction is S.~Zhang's theory of admissible arithmetic divisors. The main ingredient in the proof is an arithmetic mixed Siegel-Weil formula.