论文标题

TTAGN:用于以太坊网络钓鱼骗局检测的时间交易聚合图网络

TTAGN: Temporal Transaction Aggregation Graph Network for Ethereum Phishing Scams Detection

论文作者

Li, Sijia, Gou, Gaopeng, Liu, Chang, Hou, Chengshang, Li, Zhenzhen, Xiong, Gang

论文摘要

近年来,网络钓鱼骗局已成为第二大区块链平台以太坊涉及的最严重的犯罪类型。以太坊上的现有网络钓鱼骗局检测技术主要使用传统的机器学习或网络表示学习来从交易网络中挖掘关键信息以识别网络钓鱼地址。但是,这些方法采用了最后的交易记录,甚至完全忽略了这些记录,并且仅针对节点表示制作手动设计的功能。在本文中,我们提出了一个时间交易汇总图网络(TTAGN),以增强以太坊上的网络钓鱼骗局检测性能。具体而言,在时间边缘表示模块中,我们对节点之间历史事务记录的时间关系进行建模,以构建以太坊交易网络的边缘表示。此外,在Edge2node模块中,将节点周围的边缘表示汇总为融合拓扑交互关系,也称为交易特征。我们进一步将交易特征与图形神经网络获得的常见统计和结构特征相结合,以识别网络钓鱼地址。在现实世界中的以太坊网络钓鱼骗局数据集上进行了评估,我们的TTAGN(92.8%的AUC和81.6%的F1Score)优于最新方法,以及时间边缘表示和Edge2Node模块的有效性。

In recent years, phishing scams have become the most serious type of crime involved in Ethereum, the second-largest blockchain platform. The existing phishing scams detection technology on Ethereum mostly uses traditional machine learning or network representation learning to mine the key information from the transaction network to identify phishing addresses. However, these methods adopt the last transaction record or even completely ignore these records, and only manual-designed features are taken for the node representation. In this paper, we propose a Temporal Transaction Aggregation Graph Network (TTAGN) to enhance phishing scams detection performance on Ethereum. Specifically, in the temporal edges representation module, we model the temporal relationship of historical transaction records between nodes to construct the edge representation of the Ethereum transaction network. Moreover, the edge representations around the node are aggregated to fuse topological interactive relationships into its representation, also named as trading features, in the edge2node module. We further combine trading features with common statistical and structural features obtained by graph neural networks to identify phishing addresses. Evaluated on real-world Ethereum phishing scams datasets, our TTAGN (92.8% AUC, and 81.6% F1score) outperforms the state-of-the-art methods, and the effectiveness of temporal edges representation and edge2node module is also demonstrated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源