论文标题
混合关系指导的集合匹配以获得几次动作识别
Hybrid Relation Guided Set Matching for Few-shot Action Recognition
论文作者
论文摘要
当前的几次动作识别方法通过通过情节培训学习判别特征并设计各种时间对齐策略,从而达到令人印象深刻的性能。但是,它们受到限制,因为(a)学习个人功能而不考虑整个任务可能会失去当前情节中最相关的信息,并且(b)这些对齐策略在未对准的情况下可能会失败。为了克服这两个局限性,我们提出了一种新型的混合关系指导集匹配(HYRSM)方法,该方法结合了两个关键组件:混合关系模块和集合匹配度量。混合关系模块的目的是通过在情节中充分利用相关的关系和交叉视频来学习特定于任务的嵌入。我们基于特定于任务的功能,将查询和支持视频之间的距离度量重新制定为设定的匹配问题,并进一步设计双向平均Hausdorff指标,以提高对未对准实例的弹性。通过这种方式,拟议的HYRSM可以非常有用,并且可以灵活地预测少量摄入设置下的查询类别。我们在六个具有挑战性的基准上评估了HYRSM,实验结果表明,它通过令人信服的边距比最先进的方法进行了优越性。项目页面:https://hyrsm-cvpr2022.github.io/。
Current few-shot action recognition methods reach impressive performance by learning discriminative features for each video via episodic training and designing various temporal alignment strategies. Nevertheless, they are limited in that (a) learning individual features without considering the entire task may lose the most relevant information in the current episode, and (b) these alignment strategies may fail in misaligned instances. To overcome the two limitations, we propose a novel Hybrid Relation guided Set Matching (HyRSM) approach that incorporates two key components: hybrid relation module and set matching metric. The purpose of the hybrid relation module is to learn task-specific embeddings by fully exploiting associated relations within and cross videos in an episode. Built upon the task-specific features, we reformulate distance measure between query and support videos as a set matching problem and further design a bidirectional Mean Hausdorff Metric to improve the resilience to misaligned instances. By this means, the proposed HyRSM can be highly informative and flexible to predict query categories under the few-shot settings. We evaluate HyRSM on six challenging benchmarks, and the experimental results show its superiority over the state-of-the-art methods by a convincing margin. Project page: https://hyrsm-cvpr2022.github.io/.