论文标题

演员批判性的计划,用于途径感知的空向地面多路径多媒体交付

Actor-Critic Scheduling for Path-Aware Air-to-Ground Multipath Multimedia Delivery

论文作者

Machumilane, Achilles, Gotta, Alberto, Cassarà, Pietro, Gennaro, Claudio, Amato, Giuseppe

论文摘要

强化学习(RL)最近在网络流量管理和控制中发现了广泛的应用程序,因为它的某些变体不需要网络模型的先验知识。在本文中,我们介绍了基于参与者(AC)RL算法的多径系统中实时多媒体传递的新型调度程序。我们专注于使用多个无线路径从无人驾驶汽车(UAV)进行实时视频流的挑战性场景。作为RL代理的调度程序实时学习路径选择,路径速率分配和流动保护的冗余估计的最佳策略。调度程序可作为GSTREAMER框架的模块实现,可以在实际或模拟设置中使用。仿真结果表明,我们的调度程序可以通过实时动态适应路径条件,而无需进行培训或依靠网络渠道模型的先验知识,可以通过动态适应计划条件来定位非常低的接收器损耗率。

Reinforcement Learning (RL) has recently found wide applications in network traffic management and control because some of its variants do not require prior knowledge of network models. In this paper, we present a novel scheduler for real-time multimedia delivery in multipath systems based on an Actor-Critic (AC) RL algorithm. We focus on a challenging scenario of real-time video streaming from an Unmanned Aerial Vehicle (UAV) using multiple wireless paths. The scheduler acting as an RL agent learns in real-time the optimal policy for path selection, path rate allocation and redundancy estimation for flow protection. The scheduler, implemented as a module of the GStreamer framework, can be used in real or simulated settings. The simulation results show that our scheduler can target a very low loss rate at the receiver by dynamically adapting in real-time the scheduling policy to the path conditions without performing training or relying on prior knowledge of network channel models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源