论文标题
在先前无知下对可变选择的强大贝叶斯分析
A robust Bayesian analysis of variable selection under prior ignorance
论文作者
论文摘要
我们通过研究层次模型的灵敏度,提出了一个谨慎的贝叶斯变量选择常规,在该模型中,回归系数由Spike和Slab Prior指定。我们利用潜在变量的使用来了解共同变量的重要性。这些潜在变量还使我们能够获得模型空间的大小,这是高维问题的重要方面。在我们的方法中,我们采用了特定类型的稳健贝叶斯分析,而不是修复单个事先,我们考虑在同一参数家族中的一组先验来指定这些潜在变量的选择概率。我们通过考虑一组预期的先前选择概率来实现这一目标,这使我们能够执行灵敏度分析,以了解先前启发对变量选择的影响。灵敏度分析为我们提供了回归系数和选择指标的后代一组,我们表明,相对于选择概率的先前期望,模型选择概率的后验几率是单调的。我们还分析了合成和现实生活数据集,以说明我们谨慎的可变选择方法,并将其与其他知名方法进行比较。
We propose a cautious Bayesian variable selection routine by investigating the sensitivity of a hierarchical model, where the regression coefficients are specified by spike and slab priors. We exploit the use of latent variables to understand the importance of the co-variates. These latent variables also allow us to obtain the size of the model space which is an important aspect of high dimensional problems. In our approach, instead of fixing a single prior, we adopt a specific type of robust Bayesian analysis, where we consider a set of priors within the same parametric family to specify the selection probabilities of these latent variables. We achieve that by considering a set of expected prior selection probabilities, which allows us to perform a sensitivity analysis to understand the effect of prior elicitation on the variable selection. The sensitivity analysis provides us sets of posteriors for the regression coefficients as well as the selection indicators and we show that the posterior odds of the model selection probabilities are monotone with respect to the prior expectations of the selection probabilities. We also analyse synthetic and real life datasets to illustrate our cautious variable selection method and compare it with other well known methods.