论文标题

mmrotate:使用pytorch的旋转对象检测基准测试

MMRotate: A Rotated Object Detection Benchmark using PyTorch

论文作者

Zhou, Yue, Yang, Xue, Zhang, Gefan, Wang, Jiabao, Liu, Yanyi, Hou, Liping, Jiang, Xue, Liu, Xingzhao, Yan, Junchi, Lyu, Chengqi, Zhang, Wenwei, Chen, Kai

论文摘要

我们提出了一个名为mmrotate的开源工具箱,该工具箱提供了基于深度学习的流行旋转对象检测算法的训练,推断和评估的连贯算法框架。 Mmrotate实现了18种最先进的算法,并支持三种最常用的角度定义方法。为了促进与旋转对象检测有关的问题的未来研究和工业应用,我们还提供了大量训练有素的模型和详细的基准测试,以深入了解旋转对象检测的性能。 mmrotate将于https://github.com/open-mmlab/mmrotate公开发布。

We present an open-source toolbox, named MMRotate, which provides a coherent algorithm framework of training, inferring, and evaluation for the popular rotated object detection algorithm based on deep learning. MMRotate implements 18 state-of-the-art algorithms and supports the three most frequently used angle definition methods. To facilitate future research and industrial applications of rotated object detection-related problems, we also provide a large number of trained models and detailed benchmarks to give insights into the performance of rotated object detection. MMRotate is publicly released at https://github.com/open-mmlab/mmrotate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源