论文标题
Shackleton框架的遗传改善,以优化LLVM通过序列
Genetic Improvement in the Shackleton Framework for Optimizing LLVM Pass Sequences
论文作者
论文摘要
遗传改进是一种搜索技术,旨在改善给定的问题解决方案。在本文中,我们介绍了遗传改进的新颖使用,以找到特定问题的优化LLVM通过序列。我们在线性遗传编程框架Shackleton中开发了一个传递层贴片表示,以进化要应用于默认优化通过序列的修改。与在运行时优化的默认代码生成选项中,我们的Gi -Greoved解决方案的平均运行时提高了3.7%。提出的GI方法提供了一种自动方法来找到特定问题的优化顺序,该顺序在没有任何专家领域知识的情况下改进了通用解决方案。在本文中,我们讨论了Shackleton框架中GI功能的优点和局限性,并提出了我们的结果。
Genetic improvement is a search technique that aims to improve a given acceptable solution to a problem. In this paper, we present the novel use of genetic improvement to find problem-specific optimized LLVM pass sequences. We develop a pass-level patch representation in the linear genetic programming framework, Shackleton, to evolve the modifications to be applied to the default optimization pass sequences. Our GI-evolved solution has a mean of 3.7% runtime improvement compared to the -O3 optimization level in the default code generation options which optimizes on runtime. The proposed GI method provides an automatic way to find a problem-specific optimization sequence that improves upon a general solution without any expert domain knowledge. In this paper, we discuss the advantages and limitations of the GI feature in the Shackleton Framework and present our results.