论文标题

Shackleton框架的遗传改善,以优化LLVM通过序列

Genetic Improvement in the Shackleton Framework for Optimizing LLVM Pass Sequences

论文作者

Li, Shuyue Stella, Peeler, Hannah, Sloss, Andrew N., Reid, Kenneth N., Banzhaf, Wolfgang

论文摘要

遗传改进是一种搜索技术,旨在改善给定的问题解决方案。在本文中,我们介绍了遗传改进的新颖使用,以找到特定问题的优化LLVM通过序列。我们在线性遗传编程框架Shackleton中开发了一个传递层贴片表示,以进化要应用于默认优化通过序列的修改。与在运行时优化的默认代码生成选项中,我们的Gi -Greoved解决方案的平均运行时提高了3.7%。提出的GI方法提供了一种自动方法来找到特定问题的优化顺序,该顺序在没有任何专家领域知识的情况下改进了通用解决方案。在本文中,我们讨论了Shackleton框架中GI功能的优点和局限性,并提出了我们的结果。

Genetic improvement is a search technique that aims to improve a given acceptable solution to a problem. In this paper, we present the novel use of genetic improvement to find problem-specific optimized LLVM pass sequences. We develop a pass-level patch representation in the linear genetic programming framework, Shackleton, to evolve the modifications to be applied to the default optimization pass sequences. Our GI-evolved solution has a mean of 3.7% runtime improvement compared to the -O3 optimization level in the default code generation options which optimizes on runtime. The proposed GI method provides an automatic way to find a problem-specific optimization sequence that improves upon a general solution without any expert domain knowledge. In this paper, we discuss the advantages and limitations of the GI feature in the Shackleton Framework and present our results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源