论文标题
从分子动力学的X射线光子相关光谱模型的计算方法
Computational Approaches to Model X-ray Photon Correlation Spectroscopy from Molecular Dynamics
论文作者
论文摘要
X射线光子相关光谱(XPC)允许在材料内分辨出在较大的长度和时间尺度上的动态过程。 X射线斑点可见性光谱(XSVS)是一种使用单个衍射模式来探测超快动力学的方法。根据基本的物理过程,对XPC和XSVS数据的解释对于建立宏观响应与微结构动力学之间的联系是必要的。为了帮助解释XPC和XSVS数据,我们提出了一个计算框架,通过直接从分子动力学(MD)模拟获得的原子位置计算X射线散射强度来对这些实验进行建模。我们比较了两种替代计算方法的效率和准确性:直接方法分别计算每个衍射矢量的强度,以及基于快速傅立叶变换的方法,该方法一次计算所有衍射矢量的强度。计算出的X射线斑点模式捕获了一系列长度和时间尺度上的密度波动,并显示出可重现液体的实验XPC和XSV的已知特性和关系。
X-ray photon correlation spectroscopy (XPCS) allows for the resolution of dynamic processes within a material across a wide range of length and time scales. X-ray speckle visibility spectroscopy (XSVS) is a related method that uses a single diffraction pattern to probe ultrafast dynamics. Interpretation of the XPCS and XSVS data in terms of underlying physical processes is necessary to establish the connection between the macroscopic responses and the microstructural dynamics. To aid the interpretation of the XPCS and XSVS data, we present a computational framework to model these experiments by computing the X-ray scattering intensity directly from the atomic positions obtained from molecular dynamics (MD) simulations. We compare the efficiency and accuracy of two alternative computational methods: the direct method computing the intensity at each diffraction vector separately, and a method based on fast Fourier transform that computes the intensities at all diffraction vectors at once. The computed X-ray speckle patterns capture the density fluctuations over a range of length and time scales and are shown to reproduce the known properties and relations of experimental XPCS and XSVS for liquids.