论文标题
沿着同质芬斯勒浸没的水平破裂的大地测量学行进
Traveling along horizontal broken geodesics of a homogenous Finsler submersion
论文作者
论文摘要
在本文中,我们讨论了如何沿着同质芬斯勒浸没的水平破裂的大地学旅行,即我们研究,双叶的威尔金(Wilking)将里曼尼(Riemannian)几何形状中的几何形式称为。更确切地说,我们研究了一组分析矢量字段$ \ MATHCAL {c} $ \ MATHCAL {c} $由水平水平的单位地球vector fields $ \ Mathcal { $ \ MATHCAL {f} = \ {ρ^{ - 1}(c)\} $的同质分析鳍屈服$ρ:m \ to b $。由于在芬斯勒几何形状中不需要地测量学的反向,因此可以在非紧凑型鳍式流形$ m $上有示例,其中可达到的套装(双叶子)不再是轨道甚至子手机。尽管如此,我们证明,当$ m $紧凑而$ \ mathcal {c} $的轨道被嵌入时,可实现的集合与轨道一致。此外,如果国旗曲率为正,则$ m $与每个点的可实现集合一致。换句话说,固定了两个点的$ m $,一个可以从水平折断的大地测量学沿着一个点到另一点。 此外,我们表明,$ \ Mathcal {q)的每个轨道$ \ MATHCAL {o}(q)$与单数鳍叶叶相关的$ \ Mathcal {c} $与$ m $相关,当旗帜曲率为正时,即,即我们证明Wilking在Finsler环境中的结果。特别是我们在Finsler案中回顾Wilking的横向雅各比田地。
In this paper, we discuss how to travel along horizontal broken geodesics of a homogenous Finsler submersion, i.e., we study, what in Riemannian geometry was called by Wilking, the dual leaves. More precisely, we investigate the attainable sets $\mathcal{A}_{q}(\mathcal{C})$ of the set of analytic vector fields $\mathcal{C}$ determined by the family of horizontal unit geodesic vector fields $\mathcal{C}$ to the fibers $\mathcal{F}=\{ρ^{-1}(c)\}$ of a homogenous analytic Finsler submersion $ρ: M\to B$. Since reverse of geodesics don't need to be geodesics in Finsler geometry, one can have examples on non compact Finsler manifolds $M$ where the attainable sets (the dual leaves) are no longer orbits or even submanifolds. Nevertheless we prove that, when $M$ is compact and the orbits of $\mathcal{C}$ are embedded, then the attainable sets coincide with the orbits. Furthermore, if the flag curvature is positive then $M$ coincides with the attainable set of each point. In other words, fixed two points of $M$, one can travel from one point to the other along horizontal broken geodesics. In addition, we show that each orbit $\mathcal{O}(q)$ of $\mathcal{C}$ associated to a singular Finsler foliation coincides with $M$, when the flag curvature is positive, i.e, we prove Wilking's result in Finsler context. In particular we review Wilking's transversal Jacobi fields in Finsler case.