论文标题

$ M $ -MATRIX组的反问题,用于远距离图形

The $M$-matrix group inverse problem for distance-biregular graphs

论文作者

Abiad, Aida, Carmona, Ángeles, Encinas, Andrés M., Jiménez, María José

论文摘要

在本文中,我们使用所谓的平衡测量值通过删除顶点获得的集合提供了距离射线图的组合矩阵的组。我们还表明,可以根据上述平衡度量表达的两个表征距离图图的两个平衡阵列。由于最低原则的结果,我们表明了距离距离图的组合laplacian矩阵的组何时是$ M $ -MATRIX。

In this paper we provide the group inverse of the combinatorial Laplacian matrix of distance-biregular graphs using the so-called equilibrium measures for sets obtained by deleting a vertex. We also show that the two equilibrium arrays characterizing a distance-biregular graph can be expressed in terms of the mentioned equilibrium measures. As a consequence of the minimum principle, we show a characterization of when the group inverse of the combinatorial Laplacian matrix of a distance-biregular graph is an $M$-matrix.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源