论文标题

来自排斥相互作用的非常规的自相似性霍夫史塔特超导性

Unconventional Self-Similar Hofstadter Superconductivity from Repulsive Interactions

论文作者

Shaffer, Daniel, Wang, Jian, Santos, Luiz H.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Fractal Hofstadter bands have become widely accessible with the advent of moiré superlattices, opening the door to studies of the effect of interactions in these systems. In this work we employ a renormalization group (RG) analysis to demonstrate that the combination of repulsive interactions with the presence of a tunable manifold of Van Hove singularities provides a new mechanism for driving unconventional superconductivity in Hofstadter bands. Specifically, the number of Van Hove singularities at the Fermi energy can be controlled by varying the flux per unit cell and the electronic filling, leading to instabilities toward nodal superconductivity and chiral topological superconductivity with Chern number $\mathcal{C} = \pm 6$. The latter is characterized by a self-similar fixed trajectory of the RG flow and an emerging self-similarity symmetry of the order parameter. Our results establish Hofstadter quantum materials such as moiré heterostructures as promising platforms for realizing novel reentrant Hofstadter superconductors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源