论文标题
对语义细分的对象零件的自我监督学习
Self-Supervised Learning of Object Parts for Semantic Segmentation
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Progress in self-supervised learning has brought strong general image representation learning methods. Yet so far, it has mostly focused on image-level learning. In turn, tasks such as unsupervised image segmentation have not benefited from this trend as they require spatially-diverse representations. However, learning dense representations is challenging, as in the unsupervised context it is not clear how to guide the model to learn representations that correspond to various potential object categories. In this paper, we argue that self-supervised learning of object parts is a solution to this issue. Object parts are generalizable: they are a priori independent of an object definition, but can be grouped to form objects a posteriori. To this end, we leverage the recently proposed Vision Transformer's capability of attending to objects and combine it with a spatially dense clustering task for fine-tuning the spatial tokens. Our method surpasses the state-of-the-art on three semantic segmentation benchmarks by 17%-3%, showing that our representations are versatile under various object definitions. Finally, we extend this to fully unsupervised segmentation - which refrains completely from using label information even at test-time - and demonstrate that a simple method for automatically merging discovered object parts based on community detection yields substantial gains.