论文标题
部分可观测时空混沌系统的无模型预测
Cupolets in a Chaotic Neuron Model
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
This paper reports the first finding of cupolets in a chaotic Hindmarsh-Rose neural model. Cupolets (chaotic, unstable, periodic, orbit-lets) are unstable periodic orbits that have been stabilized through a particular control scheme applying a binary control sequence. We demonstrate different neural dynamics (periodic or chaotic) of the Hindmarsh-Rose model through a bifurcation diagram where the external input current, $I$, is the bifurcation parameter. We select a region in the chaotic parameter space and provide the results of numerical simulations. In this chosen parameter space, a control scheme is applied when the trajectory intersects with either of the two control planes. The size of the control is determined by a bit in a binary control sequence. The control is either a small microcontrol (0) or a large macrocontrol (1) that adjusts the future dynamics of the trajectory . We report the discovery of many cupolets with corresponding control sequences and comment on the differences with previously reported cupolets in the double scroll system. We provide some examples of the generated cupolets and conclude by discussing potential implications for biological neurons.