论文标题

真正的Pro- $ P $ IWAHORII-HECKE代数,Gelfand-Graev代表和某些申请

Genuine pro-$p$ Iwahori--Hecke algebras, Gelfand--Graev representations, and some applications

论文作者

Gao, Fan, Gurevich, Nadya, Karasiewicz, Edmund

论文摘要

我们研究了分裂线性还原组的中央覆盖物的Gelfand-Graev表示的Iwahori组件,并将我们的结果用于三种应用。实际上,从$ $ p $级别开始是有利的。因此,我们开始研究真正的Pro-P $ Iwahori-Hecke代数,建立Iwahori-Matsumoto和Bernstein演讲的结构。通过这种结构理论,我们首先描述了Gelfand-Graev表示的一部分,然后描述了更微妙的Iwahori部分。 对于第一个应用程序,我们将Gelfand-Graev表示与Sahi-Stokman-Venkateswaran的互惠表示相关,该代表从概念上实现了Weyl groude多个Dirichlet系列的Chinta-Gunnells动作。第二次,我们计算了常规未经委托系列的组成部分的惠特克维度;对于第三次,我们为单一未受到的原理系列做同样的事情。

We study the Iwahori-component of the Gelfand-Graev representation of a central cover of a split linear reductive group and utilize our results for three applications. In fact, it is advantageous to begin at the pro-$p$ level. Thus to begin we study the structure of a genuine pro-$p$ Iwahori-Hecke algebra, establishing Iwahori-Matsumoto and Bernstein presentations. With this structure theory we first describe the pro-$p$ part of the Gelfand-Graev representation and then the more subtle Iwahori part. For the first application we relate the Gelfand-Graev representation to the metaplectic representation of Sahi-Stokman-Venkateswaran, which conceptually realizes the Chinta-Gunnells action from the theory of Weyl group multiple Dirichlet series. For the second we compute the Whittaker dimension of the constituents of regular unramified principal series; for the third we do the same for unitary unramified principal series.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源